Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T03:36:28.141Z Has data issue: false hasContentIssue false

Effect of CO2 on the processing of Y–Ba–Cu–O superconductors

Published online by Cambridge University Press:  31 January 2011

G. Selvaduray
Affiliation:
Department of Materials Engineering, San Jose State University, San Jose, California 95192-0086
C. Zhang
Affiliation:
Department of Materials Engineering, San Jose State University, San Jose, California 95192-0086
U. Balachandran
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4838
Y. Gao
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4838
K.L. Merkle
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4838
H. Shi
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4838
R.B. Poeppel
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4838
Get access

Abstract

The superconducting properties of YBa2Cu3O6+x reacted with various known ratios of O2/CO2 gas mixtures during sintering at different temperatures were studied. Jc was found to decrease drastically upon reaction with CO2, becoming zero at certain CO2 activities. The stability region for the 123 superconductor, as a function of CO2 activity and temperature, was empirically formulated as follows: log pCO2 < (−45,000)/T + 33.4. The grain boundaries in sintered samples with Jc = 0 were investigated with HRTEM in conjunction with EDS. Two distinct types of grain boundaries were observed. Approximately 10% of the grain boundaries were wet by a thin layer of a second phase, deduced to be BaCuO2. The remaining boundaries were sharp grain boundaries. The grain structure near the sharp grain boundaries was tetragonal. These two types of grain boundaries are thought to be responsible for Jc being zero.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fjellväg, H., Karen, P., Kjekshus, A., Kofstad, P., and Norby, T., Acta Chem. Scand. A 42, 178 (1988).Google Scholar
2.Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Serge, C. U., Zhang, K., and Kleeflsh, M. S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
3.Jorgensen, J. D., Veal, B. W., Kwok, W. K., Crabtree, G. W., Umezawa, A., Nowicki, L. J., and Paulikas, A. P., Phys. Rev. B 36, 5731 (1987).Google Scholar
4.Kwok, W. K., Crabtree, G. W., Umezawa, A., Veal, B. W., Jorgensen, J. D., Malik, S. K., Nowicki, L. J., Paulikas, A. P., and Nunez, L., Phys. Rev. B 37, 106 (1988).Google Scholar
5.Balachandran, U., Poeppel, R. B., Emerson, J. E., Johnson, S. A., Lanagan, M. T., Youngdahl, C. A., Shi, D., Goretta, K. C., and Eror, N. G., Mater. Lett. 8 (11, 12), 454456 (1989).Google Scholar
6.Syono, Y., Kikuchi, M., Ohishi, K., Hiraga, K., Arai, H., Matsui, Y., Kobayashi, N., Sasaoka, T., and Muto, Y., Jpn. J. Appl. Phys. 26, L498 (1987).Google Scholar
7.Wang, Z. Z., Clayhild, J., Ong, N. P., Tarascon, J. M., Green, L. H., McKinnon, W. R., and Hull, G. W., Phys. Rev. B 36, 7222 (1987).Google Scholar
8.Nakazawa, Y. and Ishikawa, M., Physica C 158, 381 (1989).Google Scholar
9.Kwok, R. S., Cheong, S. W., Thompson, J. D., Fisk, Z., Smith, J. L., and Willis, J. O., Physica C 152, 240 (1988).Google Scholar
10.Laudise, R. A., Schneemeyer, L. F., and Barnes, R. L., J. Cryst. Growth 85, 569 (1987).CrossRefGoogle Scholar
11.Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., and Werder, D., Phys. Rev. B 36, 5719 (1987).Google Scholar
12.Van Tendeloo, G., Zandbergen, H. W., and Amelinckx, S., Solid State Commun. 63, 389 (1987).Google Scholar
13.Laudise, R. A., op. cit.Google Scholar
14.Worthington, T. K., Gallagher, W. J., and Dinger, T. R., Phys. Rev. Lett. 59, 1160 (1987).CrossRefGoogle Scholar
15. Matheson Gas Products Catalog (March 1990), p. 41.Google Scholar