Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-19T12:03:54.713Z Has data issue: false hasContentIssue false

Effect of Au distribution in NiO/Au film on the ohmic contact formation to p-type GaN

Published online by Cambridge University Press:  03 March 2011

Jiin-Long Yang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
J.S. Chen*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
S.J. Chang
Affiliation:
Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
*
a) Address all correspondence to this author. e-mail: jenschen@mail.ncku.edu.tw
Get access

Abstract

The distribution of Au and NiO in NiO/Au ohmic contact on p-type GaN was investigated in this work. Au (5 nm) films were deposited on p-GaN substrates by magnetron sputtering. Some of the Au films were preheated in N2 ambient to agglomerate into semi-connected structure (abbreviated by agg-Au); others were not preheated and remained the continuous (abbreviated by cont-Au). A NiO film (5 nm) was deposited on both types of samples, and all samples were subsequently annealed in N2 ambient at the temperatures ranging from 100 to 500 °C. The surface morphology, phases, and cross-sectional microstructure were investigated by scanning electron microscopy, glancing incident angle x-ray diffraction, and transmission electron microscopy. I-V measurement on the contacts indicates that only the 400 °C annealed NiO/cont-Au/p-GaN sample exhibits ohmic behavior and its specific contact resistance (ρc) is 8.93 × 10−3 Ω cm2. After annealing, Au and NiO contact to GaN individually in the NiO/agg-Au/p-GaN system while the Au and NiO layers become tangled in the NiO/cont-Au/p-GaN system. As a result, the highly tangled NiO-Au structure shall be the key to achieve the ohmic behavior for NiO/cont-Au/p-GaN system.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nakamura, S., Mukai, T. and Senoh, M.: High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes. J. Appl. Phys. 76, 8189 (1994).CrossRefGoogle Scholar
2.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H.: High-power, long-lifetime InGaN multi-quantum- well-structure laser diodes. Jpn. J. Appl. Phys. Part 2 36, L1059 1997.CrossRefGoogle Scholar
3.Mohs, G., Fluegel, B., Giessen, H., Tajalli, H. and Peyghambarian, N.: Photoluminescence decay dynamics in an InGaN/AlGaN/GaN double- heterostructure. Appl. Phys. Lett. 67, 1515 (1995).CrossRefGoogle Scholar
4.Nakamura, S., Senoh, M., Nagaham, S., Iwasa, N., Matsushuta, T., Kiyiku, H. and Sugimoto, Y.: Characteristics of InGaN multi-quantum-well-structure laser diodes. Appl. Phys. Lett. 68, 3269 (1996).CrossRefGoogle Scholar
5.Ishikawa, H., Kobayashi, S., Koide, Y., Yamasaki, S., Nagai, S., Umezaki, J., Koike, M. and Murakami, M.: Effects of surface treatments and metal work functions on electrical properties atp-GaN/metal interfaces. J. Appl. Phys. 81, 1315 (1997).CrossRefGoogle Scholar
6.Sheu, J.K., Su, Y.K., Chi, G.C., Chen, W.C., Chen, C.Y., Huang, C.N., Hong, J.M., Yu, Y.C., Wang, C.W. and Lin, E.K.: The effect of thermal annealing on the Ni/Au contact of p-type GaN. J. Appl. Phys. 83, 3172 (1998).CrossRefGoogle Scholar
7.Ho, J-K., Jong, C-S., Huang, C-N., Chen, C-Y., Chiu, C.C. and Shih, K-K.: Low-resistance ohmic contacts to p-type GaN. Appl. Phys. Lett. 74, 1275 (1999).CrossRefGoogle Scholar
8.King, D.J., Zhang, L., Ramer, J.C., Hersee, S.D. and Lester, L.F.: Temperature behavior of Pt/Au ohmic contacts to p-GaN, in Gallium Nitride and Related Materials II, edited by Abernathy, C.R., Amano, H., and Zolper, J.C. (Mater. Res. Soc. Symp. Proc. 468, Pittsburgh, PA, 1997), p. 421.Google Scholar
9.Jang, J.S., Park, S.J. and Seong, T.Y.: Low resistance and thermally stable Pt/Ru ohmic contacts to p-type GaN. Phys. Status Solidi A 180, 103 (2000).3.0.CO;2-M>CrossRefGoogle Scholar
10.Jang, J.S., Lee, C.W., Park, S.J., Seong, T.Y. and Ferguson, I.T.: Low-resistance and thermally stable Pd/Ru ohmic contacts to p-type GaN. J. Electron. Mater. 31, 903 (2002).CrossRefGoogle Scholar
11.Sheu, J.K., Su, Y.K., Chi, G.C., Koh, P.L., Jou, M.J., Chang, C.M., Liu, C.C. and Hung, W.C.: High-transparency Ni/Au ohmic contact to p-type GaN. Appl. Phys. Lett. 74, 2340 (1999).CrossRefGoogle Scholar
12.Ho, J-K., Jong, C-S., Chiu, C.C., Huang, C-N., Shih, K-K., Chen, L-C., Chen, F-R. and Kai, J-J.: Low-resistance ohmic contacts top-type GaN achieved by the oxidation of Ni/Au films. J. Appl. Phys. 86, 4491 (1999).CrossRefGoogle Scholar
13.Chen, L-C., Chen, F-R., Kai, J-J., Chang, L., Ho, J-K., Jong, C-S., Chiu, C.C., Huang, C-N., Chen, C-Y. and Shih, K.K.: Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN. J. Appl. Phys. 86, 3826 (1999).CrossRefGoogle Scholar
14.Koide, Y., Maeda, T., Kawakami, T., Fujita, S., Uemura, T., Shibata, N. and Murakami, M.: Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts top-type GaN. J. Electron. Mater. 28, 341 (1999).CrossRefGoogle Scholar
15.Narayan, J., Wang, H., Oh, T-H., Choi, H.K. and Fan, J.C.C.: Formation of epitaxial Au/Ni/Au ohmic contacts to p-GaN. Appl. Phys. Lett. 81, 3978 (2002).CrossRefGoogle Scholar
16.Lee, J-L., Kim, J.K., Lee, J.W., Park, Y.J. and Kim, T.: Effect of surface treatment by KOH solution on ohmic contact formation of p-type GaN. Solid-State Electron. 43, 435 (1999).CrossRefGoogle Scholar
17.Sun, J., Rickert, K.A., Redwing, J.M., Ellis, A.B., Himpsel, F.J. and Kuech, T.F.: p-GaN surface treatments for metal contacts. Appl. Phys. Lett. 76, 415 (2000).CrossRefGoogle Scholar
18.Choi, H.W., Chua, S.J., Raman, A., Pan, J.S. and Wee, A.T.S.: Plasma-induced damage to n-type GaN. Appl. Phys. Lett. 77, 1795 (2000).CrossRefGoogle Scholar
19.Chua, S.J., Choi, H.W., Zhang, J. and Li, P.: Vacancy effects on plasma-induced damage to n-type GaN. Phys. Rev. B 64, 205302 (2001).CrossRefGoogle Scholar
20.Choi, H.W., Chua, S.J. and Tripathy, S.: Morphological and structural analyses of plasma-induced damage to n-type GaN. J. Appl. Phys. 92, 4381 (2002).CrossRefGoogle Scholar
21.Marlow, G.S. and Das, M.B.: The effects of contact size and non-zero metal resistance on the determination of specific contact resistance. Solid-State Electron. 25, 91 (1982).CrossRefGoogle Scholar
22.Willis, A.J. and Botha, A.P.: Investigation of ring structures for metal- semiconductor contact resistance determination. Thin Solid Films 146, 15 (1987).CrossRefGoogle Scholar
23.van der Pauw, L.J.: A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1 (1958).Google Scholar
24.Chen, L-C., Ho, J-K., Jong, C-S., Chiu, C.C., Shih, K-K., Chen, F-R., Kai, J-J. and Chang, L.: Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN. Appl. Phys. Lett. 76, 3703 (2000).CrossRefGoogle Scholar
25.Jang, H.W., Kim, S.Y. and Lee, J-L.: Mechanism for ohmic contact formation of oxidized Ni/Au on p-type GaN. J. Appl. Phys. 94, 1748 (2003).CrossRefGoogle Scholar