Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T21:36:25.414Z Has data issue: false hasContentIssue false

Direct writing of electronic and sensor materials using a laser transfer technique

Published online by Cambridge University Press:  31 January 2011

A. Piqué
Affiliation:
Surface Modification Branch, Naval Research Laboratory, Code 6372, Washington, DC 20375
D. B. Chrisey
Affiliation:
Surface Modification Branch, Naval Research Laboratory, Code 6372, Washington, DC 20375
J. M. Fitz-Gerald
Affiliation:
Surface Modification Branch, Naval Research Laboratory, Code 6372, Washington, DC 20375
R. A. McGill
Affiliation:
Surface Modification Branch, Naval Research Laboratory, Code 6372, Washington, DC 20375
R. C. Y. Auyeung
Affiliation:
SFA, Inc., Largo, Maryland 20774
H. D. Wu
Affiliation:
SFA, Inc., Largo, Maryland 20774
S. Lakeou
Affiliation:
University of the District of Columbia, Washington, DC 20008
Viet Nguyen
Affiliation:
Geo-Centers, Inc., Ft. Washington, Maryland 20744
R. Chung
Affiliation:
Geo-Centers, Inc., Ft. Washington, Maryland 20744
M. Duignan
Affiliation:
Potomac Photonics, Inc., Lanham, Maryland 20706
Get access

Abstract

We present a laser-based direct write technique termed matrix-assisted pulsed-laser evaporation direct write (MAPLE DW). This technique utilizes a laser transparent fused silica disc coated on one side with a composite matrix consisting of the material to be deposited mixed with a laser absorbing polymer. Absorption of laser radiation results in the decomposition of the polymer, which aids in transferring the solute to an acceptor substrate placed parallel to the matrix surface. Using MAPLE DW, complex patterns consisting of metal powders, ceramic powders, and polymer composites were transferred onto the surfaces of various types of substrates with <10 micron resolution at room temperature and at atmospheric pressure without the use of masks.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hayes, D.J. and Wallace, D.B., SPIE Proc. 2920, 296 (1996).Google Scholar
2.Dimos, D. and Yang, P., Proceedings of the 48th Electronic Components and Technology Conference, Seattle, WA (IEEE, New York, 1998), p. 225.Google Scholar
3.Christensen, C.P., Duignan, M.T., and Rodriguez, L.R., SPIE Proc. 1835, 128 (1993).CrossRefGoogle Scholar
4.Laser Microfabrication: Thin Film Processes and Lithography, edited by Ehrlich, D.J. and Tsao, J.Y. (Academic, Boston, MA, 1989).Google Scholar
5.Lee, I-Y.S, Tolbert, W.A., Dlott, D.D., Doxtader, M.M., Foley, D.M., Arnold, D.R., and Ellis, E.W., J. Imaging Sci. Technol. 36, 180 (1992).Google Scholar
6.Bohandy, J., Kim, B.F., and Adrian, F.J., J. Appl. Phys. 60, 1538 (1986).Google Scholar
7.Bohandy, J., Kim, B.F., Adrian, F.J., and Jette, A.N., J. Appl. Phys. 63, 1558 (1988).CrossRefGoogle Scholar
8.Adrian, F.J., Bohandy, J., Kim, B.F., Jette, A.N., and Thompson, P., J. Vac. Sci. Technol. B 5, 1490 (1987).Google Scholar
9.McGill, R.A., Chung, R., Chrisey, D.B., Dorsey, P.C., Matthews, P., Piqué, A., Mlsna, T.E., and Stepnowski, J.L., IEEE Trans. Ultrason., Ferroelectr., Freq. Control 45, 1370 (1998).Google Scholar
10.Piqué, A., McGill, R.A., Chrisey, D.B., Leonhardt, D., Mlsna, T.E., Spargo, B.J., Callahan, J.H., Vachet, R.W., Chung, R., and Bucaro, M.A., Thin Solid Films 355–356, 536 (2000).Google Scholar
11.Polymer Handbook, edited by Brandrup, J. and Immergut, B.H. (Wiley, New York, 1989).Google Scholar
12.Ohring, M., The Materials Science of Thin Films (Academic Press, Boston, MA, 1991).Google Scholar
13.Fitz-Gerald, J.M., Wu, H.D., Piqué, A., Horwitz, J.S., Auyeung, R.C.Y, Chang, W., Kim, W.J., and Chrisey, D.B., J. Ferroelectr. Mater. (June 1999, in press).Google Scholar
14.Lundberg, B. and Sundqvist, B., J. Appl. Phys. 60, 1074 (1986).CrossRefGoogle Scholar