Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T20:57:12.680Z Has data issue: false hasContentIssue false

Direct measurement of mechanical properties of (Pb,La)TiO3 ferroelectric thin films using nanoindentation techniques

Published online by Cambridge University Press:  31 January 2011

M. Algueró
Affiliation:
Department of Materials, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
A. J. Bushby
Affiliation:
Department of Materials, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
M. J. Reece
Affiliation:
Department of Materials, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
Get access

Abstract

A procedure using nanoindentation with spherical tipped indenters is presented that allows separation of elastic, anelastic, and plastic contributions to the deformation of thin films. The procedure was demonstrated on a range of lanthanum-modified lead titanate (Pb,La)TiO3 (PTL) ferroelectric thin films. Indentation stiffness coefficients ranging from 110 to 147 GPa have been obtained depending on the microstructure and orientation of the PTL films. This coefficient was equivalent to (and so, can be directly compared with) Young's modulus of a nontextured, unpoled ceramic when films do not present preferred orientation. The trends of the anelastic contribution with the thickness, structure, microstructure, and stress level at the film/substrate interface of the films were consistent with it being produced by ferroelastic domain wall movement. Pore compaction was a major mechanism of plastic deformation for the PTL films. Grain size also affected plastic deformation, probably as a consequence of its correlation with intergranular porosity. The technique has a high spatial resolution (contact area < 10 μm2 for the results presented here), which allowed the mechanical homogeneity of the films to be studied and inhomogeneities to be identified from their mechanical response (elastic, anelastic, and plastic).

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Spearing, S.M., Acta Mater. 48, 179 (2000).CrossRefGoogle Scholar
2.Muralt, P., Integr. Ferroelectr. 17, 297 (1997).CrossRefGoogle Scholar
3.Itoh, T. and Suga, T., Nanotechnology 4, 477 (1993).CrossRefGoogle Scholar
4.Fuji, T., Watanabe, S., Suzuki, M., and Fujiu, T., J. Vac. Sci. Technol. B 13, 1119 (1995).CrossRefGoogle Scholar
5.Itoh, T., Lee, C., Chu, J., and Suga, T., Proc. MEMS’97, Nagoya, Japan, 0–7803–3744–1/97 (Institute of Electrical and Electronic Engineers, 1997), p. 78.Google Scholar
6.Luginbuhl, Ph., Racine, G.A., Lerch, Ph., Romanowicz, B., Brooks, K.G., de Rooij, N.F., Renaud, Ph., and Setter, N., Sens. Actuators, A 54, 530 (1996).CrossRefGoogle Scholar
7.Shepard, J.F. Jr., Moses, P.J., and Troiler-McKinstry, S., Sens. Actuators, A 71, 133 (1998).CrossRefGoogle Scholar
8.Muralt, P., Kholkin, A., Kohli, M., and Maeder, T., Sens. Actuators, A 53, 398 (1996).CrossRefGoogle Scholar
9.Tuchiya, T., Itoh, T., Sasaki, G., and Suga, T., J. Ceram. Soc. Jpn. 104, 159 (1996).CrossRefGoogle Scholar
10.Muralt, P., Kohli, M., Maeder, T., Kholkin, A., Brooks, K., Setter, N., and Luthier, R., Sens. Actuators, A 48, 157 (1995).CrossRefGoogle Scholar
11.Racine, G.A., Muralt, P., and Dubois, M.A., Smart Mater. Struct. 7, 404 (1998).CrossRefGoogle Scholar
12.Swain, M.V. and Mencik, J., Thin Solid Films 253, 204 (1994).CrossRefGoogle Scholar
13.Mencik, J., Munz, D., Quandt, E., Weppelman, E.R., and Swain, M.V., J. Mater. Res. 12, 2475 (1997).CrossRefGoogle Scholar
14.Field, J.S. and Swain, M.V., J. Mater. Res. 10, 101 (1995).CrossRefGoogle Scholar
15.Schaufele, A.B. and Hardrtl, K.H., J. Am. Ceram. Soc. 79, 2637 (1996).CrossRefGoogle Scholar
16.Algueró, M., Bushby, A.J., Reece, M.J., Calzada, M.L., and Pardo, L., Intergr. Ferroelectr. (in press).Google Scholar
17.Algueró, M., Calzada, M.L., Pardo, L., and Kholkin, A.L., Appl. Phys. A 71, 195 (2000).CrossRefGoogle Scholar
18.Kholkin, A.L., Colla, E.L., Tagantsev, A.K., and Taylor, D.V., Appl. Phys. Lett. 69, 3602 (1996).CrossRefGoogle Scholar
19.Algueró, M., Calzada, M.L., Pardo, L., and Snoeck, E., J. Mater. Res. 14, 4570 (1999).CrossRefGoogle Scholar
20.Algueró, M., Calzada, M.L., Quintana, C., and Pardo, L., Appl. Phys. A 68, 583 (1999).Google Scholar
21.Calzada, M.L.. Algueró, M., and Pardo, L., J.SolGel Sci. Technol. 13, 837 (1998).CrossRefGoogle Scholar
22.Algueró, M., Calzada, M.L., Snoeck, E., and Pardo, L., J. Eur. Ceram. Soc. 19, 1501 (1999).CrossRefGoogle Scholar
23.Bushby, A.J., Nondestr. Test. Eval. (in press).Google Scholar
24.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).CrossRefGoogle Scholar
25.Sneddon, I.N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
26.Jaffe, B., Cook, W.R. Jr., and Jaffe, H., Piezoelectric Ceramics (Academic Press, London, U.K., 1971).Google Scholar
27.Giannakopoulos, A.E. and Suresh, S., Acta Mater. 47, 2153 (1999).CrossRefGoogle Scholar
28.Ricote, J., Chateigner, D., Ripault, G., Pardo, L., Algueró, M., Mendiola, J., and Calzada, M.L., Ferroelectrics 241, 167 (2000).CrossRefGoogle Scholar
29.Millar, C.E., Pedersen, L., Pardo, L., Ricote, J., Alemany, C., Jiménez, B., Feuillard, G., and Janin, F., Proc. Electroceramics IV, Aachen, Germany, Sept. 5–7, edited by Waser, R., Hoffman, S., Bonnenberg, D., and Hoffman, Ch. (1994), Vol. 11, p. 1083.Google Scholar
30.Tsui, T.Y., Glassak, J.V., and Nix, W.D.. J. Mater. Res. 14, 2196 (1999).CrossRefGoogle Scholar
31.Algueró, M., Calzada, M.L., and Pardo, L., J. Mater. Res. 14, 4302 (1999).CrossRefGoogle Scholar
32.Brooks, K.G., Reaney, I.M., Klissurka, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).CrossRefGoogle Scholar