Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T00:58:05.127Z Has data issue: false hasContentIssue false

Diffraction studies on Ni–Co and Ni–Cr alloy thin films

Published online by Cambridge University Press:  31 January 2011

A.R. Sethuraman
Affiliation:
Center for Applied Energy Research, 3572 Iron Works Pike, Lexington, Kentucky 40511
R.J. De Angelis
Affiliation:
Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588
P.J. Reucroft
Affiliation:
Department of Materials Science and Engineering, University of Kentucky, Lexington, Kentucky 40506
Get access

Abstract

Alloy films of Ni–Co and Ni–Cr of compositional ratios 1:1, 1:3, and 3:1 deposited by vapor deposition were studied by Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD). Results of TEM analysis on the Ni–Co alloy films indicated that the films were face-centered cubic (fcc) in structure. XRD results confirmed the TEM observations. TEM analysis of Ni–Cr alloy films showed that the films were body-centered cubic (bcc) in structure. With increase in the Cr content more than 25%, the material contained a higher fraction of an amorphous phase. XRD studies provide limited information owing to the quasi-amorphous structure of the films of high Cr content.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bicknell, R. W., Blackburn, H., Campbell, D. S., and Stirland, D. J., Microelectron. Reliability 3, 61 (1964).CrossRefGoogle Scholar
2Swanson, J. G. and Campbell, D. S., Thin Solid Films 1, 183202 (1967).CrossRefGoogle Scholar
3Palmberg, P. W., J. Vac. Sci. Tech. 9 (1), 160 (1971).CrossRefGoogle Scholar
4Jain, R. K. and Marathe, B. R., Thin Solid Films 14, 155159 (1972).CrossRefGoogle Scholar
5Nenadovic, T. M., Fotiric, Z. B., Dimitrijevic, T. S., and Adamov, M. D., Thin Solid Films 10, 4556 (1972).CrossRefGoogle Scholar
6Lassak, L. and Hieber, K., Thin Solid Films 17, 105111 (1973).CrossRefGoogle Scholar
7Hardy, W. R. and Murti, D. K., Thin Solid Films 20, 345362 (1974).CrossRefGoogle Scholar
8Hoffmann, S. and Zalar, A., Thin Solid Films 39, 219225 (1976) and references therein.CrossRefGoogle Scholar
9Nocerino, G. and Singer, K. E., Thin Solid Films 57, 343348 (1979).CrossRefGoogle Scholar
10Toth, L., Barna, A., Menyhard, M., and Koranyi, T., Vacuum 33 (1/2), 111115 (1983).CrossRefGoogle Scholar
11Koltai, M., Trifonov, I., and Czermann, M., Vacuum 33 (1/2), 4952 (1983).CrossRefGoogle Scholar
12Sethuraman, A. R., Reucroft, P. J., De Angelis, R. J., Kim, D. K., and Okazaki, K., J. Vac. Sci. Tech. A. 8 (3), Pt. II (1990).CrossRefGoogle Scholar
13Sethuraman, A. R., Reucroft, P. J., De Angelis, R. J., and Okazaki, K., Proc. of the 37th National Symposium of the American Vacuum Society (to be published).Google Scholar
14Gadenne, P., Sella, C., Gasgnier, M., and Benhamou, A., Thin Solid Films 165, 2948 (1988) and references therein.CrossRefGoogle Scholar
15Kington, B. W., Pascual, R., and Prutton, M., Thin Solid Films 6, 267275 (1970).CrossRefGoogle Scholar
16Wakai, K., J. Appl. Phys. 61 (8), 3822 (1987).CrossRefGoogle Scholar
17Sethuraman, A. R., Ph.D. Dissertation, University of Kentucky, 1990.Google Scholar
18 JCPDS-International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081.Google Scholar
19Woo, H., Srinivasan, R., Rice, L., De Angelis, R. J., and Reucroft, P. J., J. Mol. Catalysis (in press).Google Scholar