Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T09:35:12.189Z Has data issue: false hasContentIssue false

Dielectric relaxations of high-k poly(butylene succinate) based all-organic nanocomposite films for capacitor applications

Published online by Cambridge University Press:  15 September 2011

Li Yu
Affiliation:
State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; and Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Shanming Ke
Affiliation:
Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Yihe Zhang*
Affiliation:
State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
Bo Shen
Affiliation:
State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
Anzhen Zhang
Affiliation:
State Key Laboratory of Geological Processes & Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
Haitao Huang*
Affiliation:
Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
*
a)Address all correspondence to these authors. e-mail: zyh@cugb.edu.cn
Get access

Abstract

High-dielectric constant all-organic composite films consisting of polyaniline (PANI) filler and poly(butylene succinate) host were synthesized by simple blending process. The chemical structures and morphology of the composite films were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The dielectric properties of the composite films with different filler concentrations were studied in the frequency range of 100–106 Hz. A percolation phenomenon was observed in the composite films with a percolation threshold vc = 19.7% and the dielectric constant was 10 times that of the pure host material. The enhancement in the dielectric constant can be ascribed to Maxwell–Wagner–Sillars polarization and the low-dielectric loss to good dispersion of PANI filler in the host. As the host polymer is biodegradable, it may be applied as a “green” dielectric material.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nalwa, H.S.: Handbook of Low and High Dielectric Constant Materials and Their Applications (Academic Press, San Diego, 1999).Google Scholar
2.Ke, S.M. and Huang, H.T.: Giant low frequency dielectric tunability in high-k Ba(Fe1/2Nb1/2)O-3 ceramics at room temperature. J. Appl. Phys. 108, 064104 (2010).CrossRefGoogle Scholar
3.Ke, S.M., Fan, H.Q., and Huang, H.T.: Dielectric relaxation in A(2)FeNbO(6) (A = Ba, Sr, and Ca) perovskite ceramics. J. Electroceram. 22, 252 (2009).Google Scholar
4.Thomas, P., Varughese, K.T., Dwarakanath, K., and Varma, K.B.R.: Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539 (2010).CrossRefGoogle Scholar
5.George, S. and Sebastian, M.T.: Three-phase polymer–ceramic–metal composite for embedded capacitor applications. Compos. Sci. Technol. 69, 1298 (2009).CrossRefGoogle Scholar
6.Adikarya, S.U., Chana, H.L.W., Choya, C.L., Sundaravelb, B., and Wilsonb, I.H.: Characterisation of proton irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) ceramic–polymer composites. Compos. Sci. Technol. 62, 2161 (2002).CrossRefGoogle Scholar
7.Zhang, Y.H., Ke, S.M., Huang, H.T., Zhao, L.H., Yu, L., and Chan, H.L.W.: Dielectric relaxation in polyimide nanofoamed films with low-dielectric constant. Appl. Phys. Lett. 92, 052910 (2008).CrossRefGoogle Scholar
8.Zhang, Q.M., Li, H., Poh, M., Cheng, Z.Y., Xu, H.S., Xia, F., and Huang, C.: An all-organic composite actuator material with a high-dielectric constant. Nature 419, 284 (2002).Google Scholar
9.Huang, C., Zhang, Q.M., and Su, J.: High-dielectric constant all-polymer percolative composites. Appl. Phys. Lett. 82, 3502 (2003).Google Scholar
10.Huang, C. and Zhang, Q.M.: Fully functionalized high-dielectric constant nanophase polymers with high electromechanical response. Adv. Mater. 17, 1153 (2005).Google Scholar
11.Ke, S.M., Huang, H.T., Ren, L., and Wang, Y.J.: Nearly constant dielectric loss behavior in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biodegradable polyester. J. Appl. Phys. 105, 096103 (2009).CrossRefGoogle Scholar
12.Ichikawa, Y., Suzuki, J., Washiyama, J., Moteki, Y., Noguchi, K., and Okuyama, K.: Stain-induced crystal modification in poly(tetramethylene succinate). Polymer 35, 3338 (1994).CrossRefGoogle Scholar
13.Tai, H.J.: Dielectric spectroscopy of poly(butylene succinate) films. Polymer 48, 4558 (2007).CrossRefGoogle Scholar
14.Shih, Y.F., Chen, L.S., and Jeng, R.J.: Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites. Polymer 49, 4602 (2008).CrossRefGoogle Scholar
15.Zhang, Z.M., Wei, Z.X., and Wan, M.X.: Nanostructures of polyaniline doped with inorganic acids. Macromolecules 35, 5937 (2002).Google Scholar
16.Huang, J. and Wan, M.: Polyaniline doped with different sulfonic acids by in situ doping polymerization. J. Polym. Sci. Part A: Polym. Chem. 37, 151 (1999).Google Scholar
17.Ray, S.S., Okamoto, K., and Okamoto, M.: Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36, 2355 (2003).Google Scholar
18.Nakamura, K., Saiwaki, T., and Fukao, K.: Dielectric relaxation behavior of polymerized ionic liquid. Macromolecules 43, 6092 (2010).CrossRefGoogle Scholar
19.Malmstrom, E., Hult, A., Gedde, U.W., Liu, F., and Boyd, R.H.: Relaxation processes in hyperbranched polyesters: Influence of terminal groups. Polymer 38, 4873 (1997).Google Scholar
20.Tatsumi, T., Ito, E., and Hayakawa, R.: Study of the dielectric beta-relaxation in poly(ethylene-terephthalate) and ethylene isophthalate terephthalate copolyesters. J. Polym. Sci., Part B: Polym. Phys. 30, 701 (1992).CrossRefGoogle Scholar
21.Ke, S.M., Fan, H.Q., and Huang, H.T.: Revisit of the Vogel-Fulcher freezing in lead magnesium niobate relaxors. Appl. Phys. Lett. 97, 132905 (2010).Google Scholar
22.Ichikawa, Y., Washiyama, J., Moteki, Y., Noguchi, K., and Okuyama, K.: Crystal modification in poly(ethylene succinate). Polym. J. 27, 1230 (1995).CrossRefGoogle Scholar
23.Wang, J., Shen, Q., Bao, H., Yang, C., and Zhang, Q.: Microstructure and dielectric properties of P(VDF-TrFE-CFE) with partially grafted copper phthalocyanine oligomer. Macromolecules 38, 2247 (2005).Google Scholar
24.Dantras, E., Dandurand, J., and Lacabanne, C.: TSC and broadband dielectric spectroscopy studies of the a relaxation in phosphorus-containing dendrimers. Macromolecules 37, 2812 (2004).CrossRefGoogle Scholar
25.Tai, H.J.: Interfacial polarization phenomenon in the recrystallization of poly(butylene succinate). Polymer 49, 2328 (2008).CrossRefGoogle Scholar
26.Ke, S.M., Huang, H.T., Yu, S.H., and Zhou, L.M.: Crossover from a nearly constant loss to a superlinear power-law behavior in Mn-doped Bi(Mg1/2Ti1/2)O3–PbTiO3 ferroelectrics. J. Appl. Phys. 107, 084112 (2010).CrossRefGoogle Scholar
27.Steeman, P.A.M. and van Turnhout, J.: Fine-structure in the parameters of dielectric and viscoelastic relaxations. Macromolecules 27, 5421 (1994).Google Scholar
28.Wubbenhorst, M. and van Turnhout, J.: Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. J. Non-Cryst. Solids 305, 40 (2002).Google Scholar
29.Qiu, Z., Ikehara, T., and Nishi, T.: Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization. Polymer 44, 8111 (2003).Google Scholar
30.Yoo, E.S. and Im, S.S.: Melting behavior of poly(butylene succinate) during heating scan by DSC. J. Polym. Sci., Part B: Polym. Phys. 37, 1357 (1999).Google Scholar
31.Nan, C.W., Shen, Y., and Ma, J.: Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131 (2010).CrossRefGoogle Scholar
32.Li, Q., Xue, Q.Z., Hao, L.H., Gao, X.L., and Zheng, Q.B.: Large dielectric constant of the chemically functionalized carbonnanotube/polymer composites. Compos. Sci. Technol. 68, 2290 (2008).CrossRefGoogle Scholar
33.Zhu, B.K., Xie, S.H., Xu, Z.K., and Xu, Y.Y.: Preparation and properties of the polyimide/multi-walledcarbon nanotubes (MWNTs) nanocomposites. Compos. Sci. Technol. 66, 548 (2006).Google Scholar
34.Stauffer, D.: Introduction to Percolation Theory (Taylor & Francis, London, 1992).Google Scholar
35.Wang, C.C., Song, J.F., Bao, H.M., Shen, Q., and Yang, C.: Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv. Funct. Mater. 18, 1299 (2008).Google Scholar
36.Li, J.Y., Zhang, L., and Ducharme, S.: Electric energy density of dielectric nanocomposites. Appl. Phys. Lett. 90, 132901 (2007).CrossRefGoogle Scholar
37.Li, J.Y., Huang, C., and Zhang, Q.M.: Enhanced electromechanical properties in all-polymer percolative composites. Appl. Phys. Lett. 84, 3124 (2004).CrossRefGoogle Scholar
38.Hori, M. and Nematnasser, S.: Bounds and estimates of overall moduli of composites with periodic microstructure. Mech. Mater. 14, 189 (1993).CrossRefGoogle Scholar
39.Krause, S. and Bohon, K.: Electromechanical response of electrorheological fluids and poly(dimethylsiloxane) networks. Macromolecules 34, 7179 (2001).CrossRefGoogle Scholar
40.Li, J.Y.: Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys. Rev. Lett. 90, 217601 (2003).CrossRefGoogle Scholar
41.Bhadra, S. and Khastgir, D.: Glass-rubber transition temperature of polyaniline: Experimental and molecular dynamic simulation. Synth. Met. 159, 1141 (2009).Google Scholar
42.Calame, J.P.: Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications. J. Appl. Phys. 99, 084101 (2006).Google Scholar
43.Yuan, J., Dang, Z.M., Yao, S., Zha, J., Zhou, T., Li, S., and Bai, J.: Fabrication and dielectric properties of advanced high permittivity polyaniline/poly(vinylidene fluoride) nanohybrid films with high energy storage density. J. Mater. Chem. 20, 2441 (2010).CrossRefGoogle Scholar
44.Dang, Z.M., Lin, Y., and Nan, C.W.: Novel ferroelectric polymer composites with high-dielectric constants. Adv. Mater. 15, 1625 (2003).CrossRefGoogle Scholar
45.Dang, Z.M., Wang, L., Yin, Y., Zhang, Q., and Lei, Q.Q.: Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19, 852 (2007).Google Scholar
46.Huang, C. and Zhang, Q.M.: Enhanced dielectric and electromechanical responses in high-dielectric constant all-polymer percolative composites. Adv. Funct. Mater. 14, 501 (2004).Google Scholar