Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T14:20:00.934Z Has data issue: false hasContentIssue false

Diamond-like carbon films prepared by rf substrate biasing in an ECR discharge

Published online by Cambridge University Press:  31 January 2011

W. Varhue
Affiliation:
Department of Electrical Engineering, The University of Vermont, Burlington, Vermont 05405
P. Pastel
Affiliation:
Department of Electrical Engineering, The University of Vermont, Burlington, Vermont 05405
Get access

Abstract

The optical band gap, density, and hydrogen content of diamond-like carbon films have been controllably varied by rf biasing the substrate in an ECR discharge of pure methane. The optical band gap varied from 2.7 to 1.2 eV, the density from 1.4 to 2.2 g/cm3, and the atomic fraction of hydrogen from 50 to 5%. The range of measured values is in agreement with those predicted by both the random covalent network and defected graphite models.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Angus, J., Koidl, P., and Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (CRC Press, Inc., Boca Raton, FL, 1986).Google Scholar
2DeVries, R. C., in Annual Review Materials Science, edited by Huggins, R. A., Giordmaine, J. A., and Wachtman, J. B. Jr., (Annual Reviews Inc., 1987), pp. 161187.Google Scholar
3Deshpanev, C. and Bunshah, R. J., Vac. Sci. Technol. A 7 (3), 2294 (1989).CrossRefGoogle Scholar
4Messier, R., Badzian, A. R., Badzian, T., Spear, K. E., Bachmann, P., and Roy, R., Thin Solid Films 153, 1 (1987).CrossRefGoogle Scholar
5Spitsyn, B., Bouilov, L., and Derjaguin, B., in Progress in Crystal Growth and Characterization, edited by Mullin, J. (Pergamon Press, Oxford, 1988), p. 79.Google Scholar
6Amaratunga, G., Putnis, A., Clay, K., and Milne, W., Appl. Phys. Lett. 55 (7), 634 (1989).CrossRefGoogle Scholar
7Liou, Y., Inspektor, A., Weimer, R., and Messier, R., Appl. Phys. Lett. 55 (7), 631 (1989).Google Scholar
8Hsu, W.L., Tung, D.M., Fuchs, E.A., and McCarty, K.F., Appl. Phys. Lett. 55 (26), 2739 (1989).Google Scholar
9Holland, L. and Ojha, S. M., Thin Solid Films 38, L17L19 (1976).Google Scholar
10Bubenzer, A., Dischler, B., Brandt, G., and Koidl, P., J. Appl. Phys. 54, 4590 (1983).Google Scholar
11Tamor, M. A., Haire, J. A., Wu, C. H., and Hass, K. C., Appl. Phys. Lett. 54 (2), 123 (1989).CrossRefGoogle Scholar
12Kasi, S.R., Kang, H., and Rabalais, J.W., J. Chem. Phys. 88 (9), 5914 (1988).Google Scholar
13Deutchman, A. H. and Partyka, R. J., Industrial Heating, July 12 (1988).Google Scholar
14Matsuoka, M. and Ono, K., Appl. Phys. Lett. 50 (26), 1864 (1987).Google Scholar
15Matsuo, S. and Kiuchi, M., Jpn. J. Appl. Phys. 22 (4), L210 (1983).CrossRefGoogle Scholar
16Bredas, J. and Street, G. J., Phys. C 18, L651 (1985).Google Scholar
17Robertson, J. and O'Reilly, E., Phys. Rev. B 35 (6), 2946 (1987).Google Scholar
18Tamor, M. A. and Wu, C. H., J. Appl. Phys. 67 (2), 1007 (1990).Google Scholar
19Angus, J. and Jansen, F. J., Vac. Sci. Technol. A 6 (3), 1778 (1988).CrossRefGoogle Scholar
20Messier, R. (private communication).Google Scholar
21Livi, R. (private communication).Google Scholar