Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T17:04:02.228Z Has data issue: false hasContentIssue false

Densification and microstructure development in spark plasma sintered WC–6 wt% ZrO2 nanocomposites

Published online by Cambridge University Press:  31 January 2011

Krishanu Biswas
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore, India
Amartya Mukhopadhyay
Affiliation:
Laboratory for Advanced Ceramics, Department of Materials and Metallurgical Engineering, Indian Institute of Technology, Kanpur, India
Bikramjit Basu*
Affiliation:
Laboratory for Advanced Ceramics, Department of Materials and Metallurgical Engineering, Indian Institute of Technology, Kanpur, India
Kamanio Chattopadhyay
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore, India
*
a)Address all correspondence to this author. e-mail: bikram@iitk.ac.in
Get access

Abstract

In this paper, we report the results of a transmission electron microscopy investigation on WC–6 wt% ZrO2nanocomposite, spark plasma sintered at 1300 °C, for varying times of up to 20 min. The primary aim of this work was to understand the evolution of microstructure during such a sintering process. The investigation revealed the presence of nanocrystalline ZrO2particles (30–50 nm) entrapped within submicron WC grains. In addition, relatively coarser ZrO2(60–100 nm) particles were observed to be either attached to WC grain boundaries or located at WC triple grain junctions. The evidence of the presence of a small amount of W2C, supposed to have been formed due to sintering reaction between WC and ZrO2, is presented here. Detailed structural investigation indicated that ZrO2in the spark plasma sintered nanocomposite adopted an orthorhombic crystal structure, and the possible reasons for o-ZrO2formation are explained. The increase in kinetics of densification due to the addition of ZrO2is believed to be caused by the enhanced diffusion kinetics in the presence of nonstoichiometric nanocrystalline ZrO2.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Basu, B., Lee, J.H.Kim, D.Y.: Development of WC-ZrO2nanocomposites by spark plasma sintering. J. Am. Ceram. Soc. 87, 317 2004CrossRefGoogle Scholar
2Sternitzke, M.: Review: Structural ceramic nanocomposites. J. Eur. Ceram. Soc. 17, 1061 1997CrossRefGoogle Scholar
3Shull, R.D.: View point: Nanocrystalline and nano phase materials. Nanostruct. Mater. 2, 213 1993CrossRefGoogle Scholar
4Averbek, R.S., Holfer, H.J.Tao, R.: Processing of nano-grained materials. Mater. Sci. Eng., A 66, 169 1993CrossRefGoogle Scholar
5Komarneni, S.: Nanocomposites. J. Mater. Chem. 2, 1219 1992CrossRefGoogle Scholar
6Suryanarayana, C.: Nanocrystalline materials. Int. Mater. Rev. 40, 41 1995CrossRefGoogle Scholar
7Gleiter, H.: Nanostructured materials: State of the art and perspectives. Z. Metallkd. 86, 78 1995Google Scholar
8Kusunose, T., Sekino, T., Choa, Y.H.Niihara, K.: Machinability of silicon nitride/boron nitride nanocomposites. J. Am. Ceram. Soc. 85, 2689 2002CrossRefGoogle Scholar
9Niihara, K.: New design concept of structural ceramics-ceramic nano composites. J. Ceram. Soc. Jpn. The Centennial Memorial Issue 99, 974 1991CrossRefGoogle Scholar
10Gao, L., Wang, H.Z., Hong, J.S., Miyamoto, H., Miyamoto, K., Nishikawa, Y.Torre, S.D.D.L.: SiC–ZrO2(3Y)–Al2O3nanocomposites superfast densified by spark plasma sintering. Nanostruct. Mater. 11, 43 1999CrossRefGoogle Scholar
11Gao, L., Jin, X., Kawaoka, H., Sekino, T.Niihara, K.: Microstructure and mechanical properties of SiC-mullite nano-composite prepared by spark plasma sintering. Mater. Sci. Eng., A 334, 262 2002CrossRefGoogle Scholar
12Basu, B., Venkateswaran, T.Kim, D.Y.: Microstructure and properties of spark plasma sintered ZrO2–ZrB2nanoceramic composites. J. Am. Ceram. Soc. 89, 2405 2006CrossRefGoogle Scholar
13Perara, D.S., Tokita, M.Moricca, S.: Comparative study of fabrication of Si3N4/ SiC composites by spark plasma sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 18, 401 1998CrossRefGoogle Scholar
14Gao, L., Wang, H.Z., Hong, J.S., Miyamoto, H., Miyamoto, K., Nishikawa, Y.Torre, S.D.D.L.: Mechanical properties and microstructure of nano-SiC–Al2O3composites densified by spark plasma sintering. J. Eur. Ceram. Soc. 19, 609 1999CrossRefGoogle Scholar
15Zhan, G.D., Kuntz, J., Wan, J., Garay, J.Mukherjee, A.K.: Spark-plasma-sintered BaTiO3/Al2O3nanocomposites. Mater. Sci. Eng., A 356, 443 2003CrossRefGoogle Scholar
16Groza, J.R.: ASM Materials Handbook, Vol. 7 (ASM International, Materials Park, OH, 1998), p. 583Google Scholar
17Munir, Z.A.Tamburini, U.A.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci., A 41, 763 2006CrossRefGoogle Scholar
18Basu, B., Venkateswaran, T.Sarkar, D.: Pressureless sintering and tribological properties of WC-ZrO2composites. J. Eur. Ceram. Soc. 25, 1603 2005CrossRefGoogle Scholar
19Venkateswaran, T., Sarkar, D.Basu, B.: Tribological properties of WC-ZrO2nanocomposites. J. Am. Ceram. Soc. 88, 691 2005CrossRefGoogle Scholar
20Suyama, R., Shida, T.Kume, S.: Synthesis of the orthorhombic phase of ZrO2. J. Am. Ceram. Soc. 68, C314 1985CrossRefGoogle Scholar
21Ohtaka, O., Kume, S.Iwami, T.: Synthesis of the orthorhombic phase of 2Y-ZrO2. J. Am. Ceram. Soc. 71, C164 1988CrossRefGoogle Scholar
22Marshall, D.B., James, M.R.Porter, J.R.: Structural and mechanical property change in toughened Mg-PSZ at low temperature. J. Am. Ceram. Soc. 72, 218 1989CrossRefGoogle Scholar
23Cha, S.I.Hong, S.H.: Microstructures of binderless tungsten carbides sintered by spark plasma sintering process. Mater. Sci. Eng., A 356, 381 2003CrossRefGoogle Scholar
24Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287, 183 2000CrossRefGoogle Scholar
25Kisi, E.H., Howard, C.J.Hill, R.J.: Crystal structure of orthorhombic zirconia in partially stabilized zirconia. J. Am. Ceram. Soc. 72, 1757 1989CrossRefGoogle Scholar
26Guinebretière, R., Oudjedi, Z.Dauger, A.: Orthorhombic zirconia phase in ZrO2–MgAl2O4composite materials. Scripta Mater. 34, 1039 1996CrossRefGoogle Scholar
27Pedzich, Z.: The reliability of particulate composites in the TZP/WC system. J. Eur. Ceram. Soc. 24, 3427 2004CrossRefGoogle Scholar
28Moskala, N.Pyda, W.: Thermal stability of tungsten carbide in 7 mol% calcia–zirconia solid solution matrix heat treated in argon. J. Eur. Ceram. Soc.(2006, in press)Google Scholar
29Heuer, A.H., Chaim, R.Lanteri, V.Review: Phase transformations and microstructural characterization of alloys in the system Y2O3-ZrO2, in Advances in CeramicsVol. 24A, edited by: S. Somiya, N. Yamamoto, and H. YanagidaGoogle Scholar
30Spaepen, F.Turnbull, D.: Negative pressures and melting point depression in oxide coated liquid metal droplets. Scripta Metall. 13, 149 1979CrossRefGoogle Scholar
31Skandan, G., Foster, C.M., Frase, H., Ali, M.N., Parker, J.C.Hahn, H.: Phase characterization and stabilization due to grain size effects of nanostructured Y2O3. Nanostruct. Mater. 1, 313 1992CrossRefGoogle Scholar
32Hahn, H.: Microstructure and properties of nanostructured oxides. Nanostruct. Mater. 2, 251 1993CrossRefGoogle Scholar
33Bendeliyani, N.A., Popova, S.V.Veraschagin, L.F.: New high pressure phases of ZrO2and HfO2. Geokhimya 6, 677 1967Google Scholar
34Chiao, Y.H.Chen, I-W.: Grain boundary structure and related phenomena. Trans. Jpn. Inst. Metals. Proc. of JIMIS, No. 4 27(Suppl.), 197 1986Google Scholar
35Imasato, S., Tokumoto, K., Kitada, T.Sakaguchi, S.: Properties of ultra-fine grain binderless cemented carbide ‘RCCFN’. Int. J. Refract. Met. Hard Mater. 13, 305 1995CrossRefGoogle Scholar
36Liu, H., Huang, C., Wang, J.Teng, X.: Fabrication and mechanical properties of Al2O3/Ti(C0.7N0.3) nanocomposites. Mater. Res. Bull. 41, 1215 2006CrossRefGoogle Scholar
37Holm, : Electric Contacts: Theory and Applications, 4th ed. (Springer, New York, 1967)CrossRefGoogle Scholar