Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-25T06:03:34.361Z Has data issue: false hasContentIssue false

Deformation and crystallization of Zr-based amorphous alloys in homogeneous flow regime

Published online by Cambridge University Press:  31 January 2011

Min Tao*
Affiliation:
Intel Corporation, Chandler, Arizona 85226
Atul H. Chokshi
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560012, India
Robert D. Conner
Affiliation:
Department of Manufacturing Systems Engineering and Management, California State University–Northridge, Northridge, California 91330
Guruswami Ravichandran
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125
William L. Johnson
Affiliation:
Keck Laboratories of Material Science, California Institute of Technology, Pasadena, California 91125
*
a)Address all correspondence to this author. e-mail: min.tao@intel.com
Get access

Abstract

The purpose of this study is to experimentally investigate the interaction of inelastic deformation and microstructural changes of two Zr-based bulk metallic glasses (BMGs): Zr41.25Ti13.75Cu12.5Ni10Be22.5 (commercially designated as Vitreloy 1 or Vit1) and Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy 4, Vit4). High-temperature uniaxial compression tests were performed on the two Zr alloys at various strain rates, followed by structural characterization using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Two distinct modes of mechanically induced atomic disordering in the two alloys were observed, with Vit1 featuring clear phase separation and crystallization after deformation as observed with TEM, while Vit4 showing only structural relaxation with no crystallization. The influence of the structural changes on the mechanical behaviors of the two materials was further investigated by jump-in-strain-rate tests, and flow softening was observed in Vit4. A free volume theory was applied to explain the deformation behaviors, and the activation volumes were calculated for both alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Klement, W., Willens, R.H., Duwez, P.Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960)CrossRefGoogle Scholar
2.Johnson, W.L.Metastable phasesIntermetallic Compounds Vol. 1 (Wiley, New York 1994)687Google Scholar
3.Lu, J., Ravichandran, G., Johnson, W.L.Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 (2003)CrossRefGoogle Scholar
4.Nieh, T.G., Wadsworth, J., Liu, J.C.T., Ohkubo, T., Hirotsu, Y.Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta Mater. 49, 2887 (2001)CrossRefGoogle Scholar
5.Kawamura, Y., Shibata, T., Inoue, A., Masumoto, T.Deformation behavior of Zr65Al10Ni10Cu15 glassy alloy with wide supercooled liquid region. Appl. Phys. Lett. 69, 1208 (1996)CrossRefGoogle Scholar
6.Nieh, T.G., Schuh, C., Wadsworth, J., Li, Y.Strain rate-dependent deformation in bulk metallic glasses. Intermetallics 10, 1177 (2002)CrossRefGoogle Scholar
7.van Aken, B., de Hey, P., Sietsma, J.Structural relaxation and plastic flow in amorphous La50Al25Ni25. Mater. Sci. Eng., A 278, 247 (2000)CrossRefGoogle Scholar
8.Inoue, A., Shen, B., Chang, C.Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.059]96Nb4 system. Acta Mater. 52, 4093 (2004)CrossRefGoogle Scholar
9.Inoue, A., Shen, B.L., Yavari, A.R., Greer, A.L.Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems. J. Mater. Res. 18, 1487 (2003)CrossRefGoogle Scholar
10.Nishiyama, N., Inoue, A.Glass-forming ability of bulk Pd40Ni10Cu30P20 alloy. Mater. Trans., JIM 37, 1531 (1996)CrossRefGoogle Scholar
11.Kato, H., Kawamura, Y., Inoue, A., Chen, H.S.Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20. Appl. Phys. Lett. 73, 3665 (1998)CrossRefGoogle Scholar
12.Harmon, J.S., Demetriou, M.D., Johnson, W.L., Tao, M.Deformation of glass forming metallic liquids: Configurational changes and their relation to elastic softening. Appl. Phys. Lett. 90, 131912 (2007)CrossRefGoogle Scholar
13.Schuh, C.A., Hufnagel, T.C., Ramamurty, U.Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007)CrossRefGoogle Scholar
14.Argon, A.S.Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979)CrossRefGoogle Scholar
15.Argon, A.S., Shi, L.T.Development of visco-plastic deformation in metallic glasses. Acta Metall. 31, 499 (1983)CrossRefGoogle Scholar
16.Kato, H., Kawamura, Y., Chen, H.S., Inoue, A.A fictive stress model calculation of nonlinear viscoelastic behaviors in a Zr-based glassy alloy: Stress growth and relaxation. Jpn J. Appl. Phys., Part 1 39, 5184 (2000)CrossRefGoogle Scholar
17.Khonik, V.A.The kinetics of irreversible structural relaxation and homogeneous plastic flow of metallic glasses. Phys. Status Solidi A 177, 173 (2000)3.0.CO;2-X>CrossRefGoogle Scholar
18.Johnson, W.L., Samwer, K.A universal criteria for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005)CrossRefGoogle Scholar
19.Lind, M.L., Duan, G., Johnson, W.L.Isoconfigurational elastic constants and liquid fragility of a bulk metallic glass forming alloy. Phys. Rev. Lett. 97, 015501 (2006)CrossRefGoogle ScholarPubMed
20.Demetriou, M.D., Harmon, J.S., Tao, M., Duan, G., Samwer, K., Johnson, W.L.Cooperative shear model for the rheology of glass-forming metallic liquids. Phys. Rev. Lett. 97, 065502 (2006)CrossRefGoogle ScholarPubMed
21.Duan, G., Lind, M.L., Demetriou, M.D., Johnson, W.L., Goddard, W.A. III, Cagin, T., Samwer, K.Strong configurational dependence of elastic properties for a binary model metallic glass. Appl. Phys. Lett. 89, 151901 (2006)Google Scholar
22.Spaepen, F., Turnbull, D.A mechanism for the flow and fracture of metallic glasses. Scr. Metall. Mater. 8, 563 (1974)CrossRefGoogle Scholar
23.Duine, P.A., Sietsma, J., Van den Beukel, A.Characterization of free volume in atomic models of metallic glasses. Acta Metall. Mater. 40, 743 (1992)CrossRefGoogle Scholar
24.de Hey, P., Sietsma, J., Van den Beukel, A.Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation. Acta Mater. 46, 5873 (1998)CrossRefGoogle Scholar
25.Anand, L., Su, C.A theory for amorphous viscoplastic materials undergoing finite deformations with application to metallic glasses. J. Mech. Phys. Solids 53, 1362 (2005)CrossRefGoogle Scholar
26.Anand, L., Su, C.A constitutive theory for metallic glasses at high homologous temperatures. Acta Mater. 55, 3735 (2007)CrossRefGoogle Scholar
27.Waniuk, T., Schroers, J., Johnson, W.L.Timescales of crystallization and viscous flow of the bulk glass-forming Zr–Ti–Ni–Cu–Be alloys. Phys. Rev. B 67, 184203 (2003)CrossRefGoogle Scholar
28.Pekarskaya, E., Loffler, J.F., Johnson, W.L.Microstructural studies of crystallization of a Zr-based bulk metallic glass. Acta Mater. 51, 4045 (2003)CrossRefGoogle Scholar
29.Chen, H., He, Y., Shiflet, G.J., Poon, S.J.Deformation-induced nanocrystal formation in shear bands of amorphous-alloys. Nature 367, 541 (1994)CrossRefGoogle Scholar
30.Gao, M.C., Hackenberg, R.E.Deformation-induced nanocrystal precipitation in Al-base metallic glasses. Mater. Trans. 42, 1741 (2001)CrossRefGoogle Scholar
31.Kim, J.J., Choi, Y., Suresh, S., Argon, A.S.Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002)CrossRefGoogle ScholarPubMed
32.Jiang, W.H., Pinkerton, F.E., Atzmon, M.Deformation-induced nanocrystallization: A comparison of two amorphous Al-based alloys. J. Mater. Res. 20, 696 (2005)CrossRefGoogle Scholar
33.Heggen, M., Spaepen, F., Feuerbacher, M.Plastic deformation of Pd41Ni10Cu29P20 bulk metallic glass. Mater. Sci. Eng., A 375, 1186 (2004)CrossRefGoogle Scholar
34.Heggen, M., Spaepen, F., Feuerbacher, M.Creation and annihilation of free volume during homogeneous flow of a metallic glass. J. Appl. Phys. 97, 033506 (2005)CrossRefGoogle Scholar
35.Nieh, T.G., Mukai, T., Liu, C.T.Superplastic behavior of a Zr–10Al–5Ti–17.9Cu–14.6Ni metallic glass in the supercooled liquid region. Scr. Mater. 40, 1021 (1999)CrossRefGoogle Scholar
36.Nieh, T.G., Wadsworth, J., Liu, C.T., Ice, G.E., Chung, K.S.Extended plasticity in the supercooled liquid region of bulk metallic glasses. Mater. Trans. 42, 613 (2001)Google Scholar
37.Schneider, S., Thiyagarajan, P., Johnson, W.L.Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Appl. Phys. Lett. 68, 493 (1996)CrossRefGoogle Scholar
38.Busch, R., Schneider, S., Peker, A., Johnson, W.L.Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts. Appl. Phys. Lett. 67, 1544 (1995)Google Scholar
39.Kelton, K.F., Croat, T.K., Gangopadhyay, A.K., Xing, L.Q., Greer, A.L., Weyland, M., Li, X., Rajan, K.Mechanisms for nanocrystal formations in metallic glasses. J. Non-Cryst. Solids 317, 71 (2003)CrossRefGoogle Scholar
40.Peker, A., Johnson, W.L.A highly processable metallic-glass—Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993)CrossRefGoogle Scholar
41.Busch, R., Kim, Y.J., Johnson, W.L.Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy. J. Appl. Phys. 77, 4039 (1995)CrossRefGoogle Scholar
42.Busch, R., Bakke, E., Johnson, W.L.Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725 (1998)CrossRefGoogle Scholar
43.Samwer, K., Busch, R., Johnson, W.L.Change of compressibility at the glass transition and prigogine-defay ratio in ZrTiCuNiBe alloys. Phys. Rev. Lett. 82, 580 (1999)CrossRefGoogle Scholar
44.Van Steenberge, N., Concustell, A., Sort, J., Dasc, J., Mattern, N., Gebert, A., Suriñach, S., Eckert, J., Baró, M.D.Microstructural inhomogeneities introduced in a Zr-based bulk metallic glass upon low-temperature annealing. Mater. Sci. Eng., A 491, 124 (2008)CrossRefGoogle Scholar
45.Martin, I., Ohkubo, T., Ohnuma, M., Deconihout, B., Hono, K.Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass. Acta Mater. 52, 4427 (2004)CrossRefGoogle Scholar
46.Nieh, T.G., Iwamoto, C., Ikuhara, Y., Lee, K.W., Chung, Y.W.Comparative studies of crystallization of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy. Intermetallics 12, (11)1183 (2004)CrossRefGoogle Scholar
47.Fatay, D., Gubicza, J., Szommer, P., Lendvai, J., Bletry, M., Guyot, P.Thermal stability and mechanical properties of a Zr-based bulk amorphous alloy. Mater. Sci. Eng., A 387–389, 1001 (2004)CrossRefGoogle Scholar
48.Bletry, M., Guyot, P., Brechet, Y., Blandin, J.J., Soubeyroux, J.L.Homogeneous deformation of bulk metallic glasses in the super-cooled liquid state. Mater. Sci. Eng., A 387, 1005 (2004)CrossRefGoogle Scholar
49.Gao, Y.L., Shen, J., Sun, J.F., Wang, G.Crystallization of Zr–Al–Ni–Cu bulk amorphous alloy during continuous heating. Rare Met. Mater. Eng. 32, 518 (2003)Google Scholar
50.Loffler, J.F., Johnson, W.L.Model for decomposition and nanocrystallization of deeply undercooled Zr41.2Ti13.8 Cu12.5Ni10Be22.5. Appl. Phys. Lett. 76, 3394 (2000)CrossRefGoogle Scholar
51.Cohen, M.H., Turnbull, D.Molecular transport in liquids and glasses. J. Chem. Phys. 31–5, 1164 (1959)CrossRefGoogle Scholar
52.Jin, H.J., Wen, P., Lu, K.Pressure effect on glass transition in a Zr65Al7.5Cu27.5 metallic glass. Appl. Phys. Lett. 83, 3284 (2003)CrossRefGoogle Scholar