Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T01:28:57.269Z Has data issue: false hasContentIssue false

Crystallography and morphology of a lathy ferrite in Fe–Cr–Ni alloys during directional solidification

Published online by Cambridge University Press:  24 July 2013

Junwei Fu*
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Yuansheng Yang
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: hitfujw@163.com
Get access

Abstract

The relationship between morphology and crystallography of an entangled lathy ferrite during directional solidification in Fe–Cr–Ni alloy has been investigated. During solidification, morphology of the lathy ferrite depends on the orientation relationship between the lathy ferrite and austenite. When the plane in the austenite substrate is ${(1\bar 11)_{\rm{\gamma }}}$, “Y-shaped” lathy ferrite grows in an entangled cluster and the orientation relationship between the lathy ferrite and austenite is the Nishiyama–Wassermann relationship. Lathy ferrite is preferentially elongated along ${\langle 211\rangle _{\rm{\gamma }}}$ and ${\langle 011\rangle _{\rm{\gamma }}}$ directions on ${(1\bar 11)_{\rm{\gamma }}}$ plane due to lower misfit. The included angle among the “Y-shaped” lathy ferrite is about 120° because the angle between each pair of ${[21\bar 1]_{\rm{\gamma }}}$, ${[\bar 112]_{\rm{\gamma }}}$, and ${[\bar 1\bar 2\bar 1]_{\rm{\gamma }}}$ crystal directions is equal to 120°. Formation mechanism of the perpendicular lathy ferrite has also been analyzed according to the relationship between ${\langle 211\rangle _{\rm{\gamma }}}$ and ${\langle 011\rangle _{\rm{\gamma }}}$ on ${(1\bar 11)_{\rm{\gamma }}}$ plane. This indicates that required crystal morphology of the lathy ferrite in the solidified microstructure can be obtained by controlling the crystal plane of austenite.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lo, K.H., Shek, C.H., and Lai, J.K.L.: Recent developments in stainless steels. Mater. Sci. Eng., R 65, 39 (2009).CrossRefGoogle Scholar
Brooks, J.A. and Thompson, A.W.: Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int. Mater. Rev. 36, 16 (1991).CrossRefGoogle Scholar
Hunter, A. and Ferry, M.: Phase formation during solidification of AISI 304 austenitic stainless steel. Scr. Mater. 46, 253 (2002).CrossRefGoogle Scholar
Rajasekhar, K., Harendranath, C.S., Raman, R., and Kulkarni, S.D.: Microstructural evolution during solidification of austenitic stainless steel weld metals: A color metallographic and electron microprobe analysis study. Mater. Charact. 38, 53 (1997).CrossRefGoogle Scholar
Kim, S.H., Moon, H.K., Kang, T., and Lee, C.S.: Dissolution kinetics of delta ferrite in AISI 304 stainless steel produced by strip casting process. Mater. Sci. Eng., A 356, 390 (2003).CrossRefGoogle Scholar
Herlach, D.M.: Non-equilibrium solidification of undercooled metallic melts. Mater. Sci. Eng., R 12, 177 (1994).CrossRefGoogle Scholar
Su, Y.Q., Luo, L.S., Li, X.Z., Guo, J.J., Yang, H.M., and Fu, H.Z.: Well-aligned in situ composites in directionally solidified Fe-Ni peritectic system. Appl. Phys. Lett. 89, 231918 (2006).CrossRefGoogle Scholar
Fu, J.W., Yang, Y.S., and Guo, J.J.: Formation of a blocky ferrite in Fe–Cr–Ni alloy during directional solidification. J. Cryst. Growth 311, 3661 (2009).CrossRefGoogle Scholar
Hecht, U., Gránásy, L., Pusztai, T., Böttger, B., Apel, M., Witusiewicz, V., Ratke, L., De Wilde, J., Froyen, L., Camel, D., Drevet, B., Faivre, G., Fries, S.G., Legendre, B., and Rex, S.: Multiphase solidification in multicomponent alloys. Mater. Sci. Eng., R 46, 1 (2004).CrossRefGoogle Scholar
Edström, K., Ito, S., and Thomas, J.O.: Crystal structure and charge compensation mechanisms in a barium potassium â-ferrite. J. Mater. Chem. 5, 995 (1995).CrossRefGoogle Scholar
Fukumoto, S., Okane, T., Umeda, T., and Kurz, W.: Crystallographic relationships between δ-ferrite and γ-austenite during unidirectional solidification of Fe-Cr-Ni alloys. ISIJ Int. 40, 677 (2000).CrossRefGoogle Scholar
Baldissin, D. and Battezzati, L.: Multicomponent phase selection theory applied to high nitrogen and high manganese stainless steels. Scr. Mater. 55, 839 (2006).CrossRefGoogle Scholar
Brooks, J.A., Williams, J.C., and Thompson, A.W.: STEM analysis of primary austenite solidified stainless steel welds. Metall. Trans. A 14, 23 (1983).CrossRefGoogle Scholar
Vitek, J.M., Dasgupta, A., and David, S.A.: Microstructural modification of austenitic stainless steels by rapid solidification. Metall. Trans. A 14, 1833 (1983).CrossRefGoogle Scholar
Brooks, J.A., Baskes, M.I., and Greulich, F.A.: Solidification modeling and solid-state transformations in high-energy density stainless steel welds. Metall. Trans. A 22, 915 (1991).CrossRefGoogle Scholar
Shankar, V., Gill, T.P.S., Terrance, A.L.E., Mannan, S.L., and Sundaresan, S.: Relation between microstructure, composition, and hot cracking in Ti-stabilized austenitic stainless steel weldments. Metall. Trans. A 31, 3109 (2000).CrossRefGoogle Scholar
Lin, X., Yue, T.M., Yang, H.O., and Huang, W.D.: Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy. Metall. Trans. A 38, 127 (2007).CrossRefGoogle Scholar
Fu, J.W., Yang, Y.S., Guo, J.J., Ma, J.C., and Tong, W.H.: Formation of two-phase coupled microstructure in AISI 304 stainless steel during directional solidification. J. Mater. Res. 24, 2385 (2009).CrossRefGoogle Scholar
Fu, J.W., Yang, Y.S., Guo, J.J., Ma, J.C., and Tong, W.H.: Formation of a two-phase microstructure in Fe-Cr-Ni alloy during directional solidification. J. Cryst. Growth 311, 132 (2008).CrossRefGoogle Scholar
Headley, T.J. and Brooks, J.A.: A new bcc-fcc orientation relationship observed between ferrite and austenite in solidification structures of steels. Metall. Trans. A 33, 5 (2002).CrossRefGoogle Scholar
Morito, S., Tanaka, H., Konishi, R., Furuhara, T., and Maki, T.: The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 51, 1789 (2003).CrossRefGoogle Scholar
Morito, S., Huang, X., Furuhara, T., Maki, T., and Hansen, N.: The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 54, 5323 (2006).CrossRefGoogle Scholar
Qiu, D. and Zhang, W.Z.: A TEM study of the crystallography of austenite precipitates in a duplex stainless steel. Acta Mater. 55, 6754 (2007).CrossRefGoogle Scholar
Mangan, M.A., Kral, M.V., and Spanos, G.: Correlation between the crystallography and morphology of proeutectoid Widmanstätten cementite precipitates. Acta Mater. 47, 4263 (1999).CrossRefGoogle Scholar
Zhang, M.X. and Kelly, P.M.: Crystallography and morphology of Widmanstätten cementite in austenite. Acta Mater. 46, 4617 (1998).CrossRefGoogle Scholar
Kurdjumov, G. and Sachs, G.: Über den Mechanismus der Stahlhärtung. Z. Phys. 64, 325 (1930).CrossRefGoogle Scholar
Nishiyama, Z.: X-ray investigation of the mechanism of the transformation from face centered cubic lattice to body centered cubic. Science Reports of the Research Institutes, Tohoku University, Vol. 23 (1934), p. 637.Google Scholar
Wassermann, G.: Einfluβ der α-γ-Umwandlung eines irreversiblen Nickelstahls auf Kristallorientierung und Zugfestigkeit. Arch. Eisenhüttenwes. 6, 347 (1933).CrossRefGoogle Scholar
Pitsch, W.: The martensite transformation in thin foils of iron-nitrogen alloys. Philos. Mag. 4, 577 (1959).CrossRefGoogle Scholar
Zou, H.F., Yang, H.J., and Zhang, Z.F.: Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals. Acta Mater. 56, 2649 (2008).CrossRefGoogle Scholar
Fu, J.W. and Yang, Y.S.: Orientational dependence of lathy ferrite in Fe-Cr-Ni alloy during directional solidification. Mater. Lett. 81, 177 (2012).CrossRefGoogle Scholar
Wulff, G.: Zur frage der geschwindigkeit des wachstums und der auflösung von kristallflächen. Z. Kristallogr. 34, 449 (1901).CrossRefGoogle Scholar