Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T07:17:50.675Z Has data issue: false hasContentIssue false

Crystallization kinetics of yttrium aluminum garnet (Y3Al5O12)

Published online by Cambridge University Press:  31 January 2011

Bradley R. Johnson
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, Illinois 61801
Waltraud M. Kriven
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, Illinois 61801
Get access

Abstract

The kinetics and pathways for crystallization of solid, amorphous, yttrium aluminum garnet (YAG) were studied using isothermal differential thermal analysis, x-ray diffraction, and transmission electron microscopy. The activation energy for crystallization was 437 KJ/mol and the measured Avrami exponent was 2.74, which corresponded to three-dimensional crystal growth with a constant number of nuclei. Time–temperature–transformation (T–T–T) curves were developed from the data to predict crystallization rates as a function of temperature. The crystallization pathway for YAG in this system is compared to others reported in the literature.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Corman, G.S., J. Mater. Sci. Lett. 12, 379 (1993).CrossRefGoogle Scholar
2.Karato, S., Wang, X., and Fujino, K., J. Mater. Sci. 29, 6458 (1994).CrossRefGoogle Scholar
3.Caslavsky, J.L. and Viechnicki, D.J., J. Mater. Sci. 15, 1709 (1980).CrossRefGoogle Scholar
4.Weber, J.K.R., Cho, B., Hixson, A.D., Abadie, J.G., Nordine, P.C., Kriven, W.M., Johnson, B.R., and Zhu, D., J. Eur. Cer. Soc. 19, 2543 (1999).CrossRefGoogle Scholar
5.Doleman, P.A. and Butler, E.G., Key Eng. Mater. 127–131, 193 (1997).Google Scholar
6.King, B.H. and Halloran, J.W., J. Am. Ceram. Soc. 78, 2141 (1995).CrossRefGoogle Scholar
7.Morscher, G.N., Farmer, S., and Sayir, A., Cer. Eng. and Sci. Proc. 16, 959 (1995).Google Scholar
8.Yin, L., Zhi-Fan, Z., Halloran, J., and Laine, R.M., J. Am. Ceram. Soc. 81, 629 (1998).Google Scholar
9.Popovich, D., Lombardi, J.L., and King, B.H., Ceram. Eng. Sci. Proc. 18(3), 65 (1997).CrossRefGoogle Scholar
10.Blumenthal, W.R. and Taylor, S.T., Acta Mater. 45, 3071 (1997).CrossRefGoogle Scholar
11.Blumenthal, W.R. and Phillips, D.S., J. Am. Ceram. Soc. 79, 1047 (1996).CrossRefGoogle Scholar
12.Kriven, W.M., Jilavi, M.H., Zhu, D., Weber, J.K.R., Cho, B., Felten, J., and Nordine, P.C., in Ceramic Microstructures: Control at the Atomic Level, edited by Tomsia, A.P. and Glaeser, A.M. (Plenum Press, New York, 1998), p. 169.CrossRefGoogle Scholar
13.Weber, J.K.R., Felten, J.J., Cho, B., and Nordine, P.C., Nature 393, 469 (1998).CrossRefGoogle Scholar
14.Angell, C.A., Science 267, 1924 (1995).CrossRefGoogle Scholar
15.Weber, J.K.R., Abadie, J.G., Hixson, A.D., Nordine, P.C., and Jerman, G.A., J. Am. Ceram. Soc. 84, 1868 (2000).CrossRefGoogle Scholar
16.Nguyen, M.H., MS Thesis, University of Illinois at Urbana-Champaign, Urbana, IL (1997).Google Scholar
17.Gülgün, M.A., Nguyen, M.H., and Kriven, W.M., J. Am. Ceram. Soc. 82, 556 (1999).CrossRefGoogle Scholar
18.Nguyen, M.H., Lee, S-J., and Kriven, W.M., J. Mater. Res. 14, 3417 (1999).CrossRefGoogle Scholar
19.Weber, J.K.R., Felten, J.J., and Nordine, P.C., Rev. Sci. Inst. 78, 31 (1996).Google Scholar
20.Krishnan, S., Felten, J.J., Rix, J.E., and Weber, J.K.R., Rev. Sci. Inst. 68, 3512 (1997).CrossRefGoogle Scholar
21.Weber, J.K.R., Anderson, C.D., Krishnan, S., and Nordine, P.C., J. Am. Ceram. Soc. 78, 577 (1995).CrossRefGoogle Scholar
22.Weber, J.K.R., Hampton, S.S., Merkley, D.R., Rey, C.A., Zatarski, M.M., and Nordine, P.C., Rev. Sci. Inst. 65, 456 (1994).CrossRefGoogle Scholar
23.Weber, J.K.R. and Nordine, P.C., Microgravity Sci. Technol. VII, 279 (1995).Google Scholar
24.Benedict, J., Anderson, R., and Klepeis, S.J., in Specimen Preparation for Transmission Electron Microscopy of Materials III, edited by Anderson, R., Tracy, B. and Bravman, J. (Mater. Res. Soc. Symp. Proc. 254, Pittsburgh, PA, 1992), p. 121.Google Scholar
25.Klepeis, S.J., Benedict, J.P., and Anderson, R.M., in Specimen Preparation for Transmission Electron Microscopy of Materials, edited by Bravman, J.C., Anderson, R.M., and McDonald, M.L. (Mater. Res. Soc. Symp. Proc. 115, Pittsburgh, PA, 1988), p. 179.Google Scholar
26.Bright, D.S., MacLispix (National Insitute of Standards, Gaithersburg, MD, 1999).Google Scholar
27.Galwey, A.K. and Brown, M.E., in Handbook of Thermal Analysis and Calorimetry, Vol. 1: Principles and Practice, edited by Brown, M.E. (Elsevier Science, Amsterdam, The Netherlands, 1998), Vol. 1, p. 147.Google Scholar
28.Porter, D.A. and Easterling, K.E., in Phase Transformations in Metals and Alloys (Chapman and Hall, New York, 1992).CrossRefGoogle Scholar
29.Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
30.Avrami, M., J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
31.Avrami, M., J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
32.Kaleidagraph (Synergy Software, Perkiomen, PA, 1998).Google Scholar
33.Williams, D.B. and Carter, C.B., in Transmission Electron Micros-copy: a Textbook for Materials Science (Plenum Press, New York, 1996).CrossRefGoogle Scholar
34.Yamaguchi, O., Takeoka, K., and Hayashida, A., J. Mater. Sci. Lett. 10, 101 (1990).CrossRefGoogle Scholar
35.Yamaguchi, O., Takeoka, K., Hirota, K., Takano, H., and Hayashida, A., J. Mater. Sci. 27, 1261 (1992).CrossRefGoogle Scholar
36.Veitch, C.D., J. Mater. Sci. 26, 6527 (1991).CrossRefGoogle Scholar
37.Hay, R.S., J. Mater. Res. 8, 578 (1993).CrossRefGoogle Scholar
38.Hess, N.J., Maupin, G.D., Chick, L.A., Sunberg, D.S., McCreedy, D.E., and Armstrong, T.R., J. Mater. Sci. 29, 1873 (1994).CrossRefGoogle Scholar
39.Le Floch, S., Rifflet, J.C., Coutures, J., Gervais, M., and Coutures, J.P., Mater. Sci. Eng. A. A173, 185 (1993).CrossRefGoogle Scholar
40.Liu, Y., Zhang, Z-F., King, B., Halloran, J., and Laine, R.M., J. Am. Ceram. Soc. 79, 385 (1996).CrossRefGoogle Scholar
41.Minkova, N., Todorovsky, D., and Furdinova, G., Mater. Chem. Phys. 38, 383 (1994).CrossRefGoogle Scholar
42.Yoder, H.S. and Kieth, M.L., Am. Mineral. 36, 519 (1951).Google Scholar
43.Gervais, M., Le Floch, S., Rifflet, J.C., Coutures, J., and Coutures, J.P., J. Am. Ceram. Soc. 75, 3166 (1992).CrossRefGoogle Scholar
44.Cockayne, B., J. Less-Com. Metals 114, 199 (1985).CrossRefGoogle Scholar
45.Lin, I-C., Navrotsky, A., Weber, J.K.R., and Nordine, P.C., J. Non-Cryst. Solids 243, 273 (1999).CrossRefGoogle Scholar
46.Gervais, M., Le Floch, S., Gautier, N., Massiot, D., and Coutures, J.P., Mater. Sci. Eng. B. B45, 108 (1997).CrossRefGoogle Scholar
47.Weber, J.K.R., Krishnan, S., Ansell, S., Hixson, A.D., and Nordine, P.C., Phys. Rev. Let. 84, 3622 (2000).CrossRefGoogle Scholar
48.Angell, C.A., Shao, J., and Grabow, M., in Non Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, edited by Giordano, M., Leporini, D. and Tosi, M. P. (World Scientific, Singapore, 1996), p. 50.Google Scholar
49.Aasland, S. and McMillan, P.F., Nature 369, 633 (1994).CrossRefGoogle Scholar
50.McMillan, P.F., Ho, C., Aasland, S., Yeganeh-Haeri, A., and Weber, R., in Structure and Dynamics of Glasses and Glass Formers, edited by Angell, C.A., Ngai, K.L., Kieffer, J., Egami, T., and Nienhaus, G.U.. (Mater. Res. Soc. Symp. Proc. 455, Pittsburgh, PA, 1997), p. 377.Google Scholar