Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-20T06:51:53.218Z Has data issue: false hasContentIssue false

Crystallization and sintering characteristics of chemically vapor deposited silicon nitride powders

Published online by Cambridge University Press:  31 January 2011

C. Gomez-Aleixandre
Affiliation:
Departamento de Física Aplicada, UAM, and Instituto de Ciencia de Materiales, CSIC, Cantoblanco, 28049 Madrid, Spain
J.M. Albella
Affiliation:
Departamento de Física Aplicada, UAM, and Instituto de Ciencia de Materiales, CSIC, Cantoblanco, 28049 Madrid, Spain
J.M. Martínez-Duart
Affiliation:
Departamento de Física Aplicada, UAM, and Instituto de Ciencia de Materiales, CSIC, Cantoblanco, 28049 Madrid, Spain
F. Orgaz
Affiliation:
Centro de Investigación de ERCROS, S.A., Ronda de Valdecarrizo, 23. Tres Cantos, 28760 Madrid, Spain
Get access

Abstract

High purity silicon nitride powders have been obtained by Chemical Vapor Deposition (CVD), through the reaction of SiH4 and NH3 gas mixtures at 1000 °C in a quartz reactor. The crystallization characteristics of the powder have been followed by infrared and x-ray diffraction analysis. The material shows a transition from amorphous to the α-phase after a thermal treatment at about 1300 °C for 1 h, while the β-phase starts to appear at 1725 °C. The sintering properties of the amorphous and crystalline phases were evaluated by measuring the dilatometric curves of compacted powders.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rireley, F., Sprechsaal 118, 225233 (1985).Google Scholar
2Schwier, G., Nietfeld, G., and Franz, G., Mater. Sci. Forum 47, 120 (1989).CrossRefGoogle Scholar
3Galasso, F., Kuntz, U., and Croft, W., J. Am. Ceram. Soc. 52, 431 (1972).Google Scholar
4Nihara, K. and Hirai, T., J. Mater. Sci. 11, 593603 and 604-611 (1976); ibid. 12, 1233-1242 (1977).CrossRefGoogle Scholar
5Airey, A. C., Clarke, S., and Popper, P., Proc. Brit. Ceram. Soc. 22, 305320 (1973).Google Scholar
6Prochazka, S. and Grescowich, C., Ceram. Bull. 57, 579586 (1978).Google Scholar
7Lee, H.J., Eguchi, K., and Yoshida, T., J. Am. Ceram. Soc. 73, 33563362 (1990).CrossRefGoogle Scholar
8Ho, P., Buss, R.J., and Loehman, R.E., J. Mater. Res. 4, 873881 (1989).CrossRefGoogle Scholar
9Kern, W. and Ban, V., in Thin Film Processes, cap III-2, edited by Voseen, J. L. and Kern, W. (Academic Press, New York, 1978).Google Scholar
10Wada, N., Solin, S.A., Wong, J., and Prochazka, S., J. Non-Cryst. Solids 43, 715 (1981).CrossRefGoogle Scholar
11and, C.P. GazzaraMessier, D. R., Ceram. Bull. 56, 777 (1977).Google Scholar
12Lange, F. F., Int. Metals Rev. 247, 1 (1980).Google Scholar