Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-18T02:28:04.556Z Has data issue: false hasContentIssue false

The crystal structure of the high-temperature polymorph of α–hexathienyl (α–6T/HT)

Published online by Cambridge University Press:  03 March 2011

T. Siegrist
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-0636
R.M. Fleming
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-0636
R.C. Haddon
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-0636
R.A. Laudise
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-0636
A.J. Lovinger
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-0636
H.E. Katz
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-0636
P. Bridenbaugh
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-0636
D.D. Davis
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-0636
Get access

Abstract

α-hexathienyl (α–6T) is a highly promising material for application in thin film transistor devices. Recently, record high mobilities, together with record high current on/off ratios, have been reported.1 Thus far, structural information on this exciting material is sketchy. The crystal structures of several such hexamers have been investigated, but only with powder samples, since the crystal growth has proven exceedingly difficult.2-5 Powder Rietveld refinements on these materials are severely hampered by the large number of overlapping reflections, preferred orientation, ambiguities in symmetry, etc. Here, we present a crystal structure of the high-temperature polymorph of α–6T (α–6T/HT), as determined from a single-crystal structure analysis. In this polymorph, the hexamer crystallizes in the smallest unit cell so far reported for this material, but the molecule is flat. Extended Hückel theory (EHT) band structure calculations show that α–6T/HT is an indirect gap semiconductor, with the conduction band minimum at Y and the valence band maximum at Γ. The conduction and valence bands both show a remarkable degree of dispersion along X and Y for a molecular crystal. The electronic band structure of this material is strikingly similar to that of the two-dimensional organic superconductors based on bis(ethylenedithio)tetrathiafulvalene (ET), such as κ−(ET)2 Cu(NCS)2.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Katz, H.E.et al., Polym. Mater. Sci. Eng. Proc, 72, 467 (1995).Google Scholar
2Porzio, W., Destri, S., Mascherpa, M., Rossini, S., and Brükner, S., Synthetic Met. 55–57, 408 (1993).CrossRefGoogle Scholar
3Porzio, W., Destri, S., Mascherpa, M., and Brükner, S., Acta Polymer, 44, 266 (1993).Google Scholar
4Servet, B., et al., Adv. Mater. 5, 461 (1993).Google Scholar
5Destri, S., Mascherpa, M., and Porzio, W., Adv. Mater. 5, 43 (1993).CrossRefGoogle Scholar
6van Bolhuis, F., Wynberg, H., Havinga, E. E., Meijer, E. W., and Staring, E.G.J., Synthetic Met. 30, 381 (1989).Google Scholar
7Hotta, S. and Waragi, K.J., Mater. Chem. 1, 835 (1991).CrossRefGoogle Scholar
8Taliani, R., Zamboni, R., Ruani, G., Rossini, S., and Lazzaroni, R., J. Mol. Electron. 6, 225 (1990).Google Scholar
9Gabe, E. J., Le Page, Y., Charland, J-P., Lee, F. L., and White, P. S., J. Appl. Crystallogr. 22, 384 (1989).Google Scholar
10Williams, J.M., Ferraro, J.R., Thorn, R.J., Carlson, K.D., Geiser, U., Wang, H. H., Kini, A. M., and Whangbo, M-H., Organic Superconductors (Prentice-Hall, Englewood Cliffs, NJ, 1992).Google Scholar
11Haddon, R.C., Ramirez, A. P., and Glarum, S.H., Adv. Mater. 6, 316322 (1994); Andrews, M.P., Cordes, A.W., Douglass, D.C., Fleming, R. M., Glarum, S. H., Haddon, R. C., Marsh, P., Oakley, R. T., Palstra, T. T. M., Schneemeyer, L. F., Trucks, G. W., Tycko, R., Waszczak, J. V., Young, K. M., and Zimmerman, N. M., J. Am. Chem. Soc. 113, 3559 (1991).CrossRefGoogle Scholar
12Urayama, H., Yamochi, H., Saito, G., Nozawa, K., Sugano, T., Kinoshita, M., Saito, S., Oshima, K., Kawamoto, A., and Tanaka, J., Chem. Lett., 55 (1988).Google Scholar