Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T22:57:53.372Z Has data issue: false hasContentIssue false

Crystal structure of hafnia–zirconia mixtures obtained by calcination of hydrous oxide prepared by precipitation

Published online by Cambridge University Press:  31 January 2011

Li-Min Tau
Affiliation:
Kentucky Energy Cabinet Laboratory, P. O. Box 13015, Lexington, Kentucky 40512
Ram Srinivasan
Affiliation:
Kentucky Energy Cabinet Laboratory, P. O. Box 13015, Lexington, Kentucky 40512
Robert J. De Angelis
Affiliation:
Kentucky Energy Cabinet Laboratory, P. O. Box 13015, Lexington, Kentucky 40512
Tim Pinder
Affiliation:
Kentucky Energy Cabinet Laboratory, P. O. Box 13015, Lexington, Kentucky 40512
Burtron H. Davis
Affiliation:
Kentucky Energy Cabinet Laboratory, P. O. Box 13015, Lexington, Kentucky 40512
Get access

Abstract

The pH of the solution in contact with a hydrous zirconium oxide plays a dominant role in determining the crystal phase, tetragonal or monoclinic, in the calcined material. The substitution of low concentrations of hafnium for zirconium destabilizes the tetragonal phase so that only the monoclinic phase is formed; the amount of Hf required for destabilization depends upon the pH used for the preparation of the hydrous oxide. While this study has defined a phenomenon, the results do not permit a definition of the mechanism for it.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Davis, B. H., J. Am. Ceram. Soc. 67, C168 (1984).Google Scholar
2Srinivasan, R., DeAngelis, R. J., and Davis, B. H., J. Mater. Res. 1, 583 (1986).Google Scholar
3Srinivasan, R., Harris, M. B., DeAngelis, R. J., and Davis, B. H., J. Mater. Res. (to be published).Google Scholar
4(a) Krebs, M. A. and Condrate, R. A. Sr, J. Am. Ceram. Soc. 65, C144 (1982). (b) R. Ruh, H. J. Garret, R. F. Domagala, and N. M. Tallan, J. Am. Ceram. Soc. 51, 23 (1968).Google Scholar
5Davis, B. H., Appl. Surf. Sci. 19, 200 (1984).Google Scholar
6Simpson, S. and Davis, B. H., J. Phys. Chem. 91, 5664 (1987).Google Scholar
7Garvie, R. C., Hannink, R. H., and Pascoe, R. T., Nature 253, 703 (1975).Google Scholar
8Porter, D. L., Evans, A. G., and Heuer, A. H., Acta Metall. 27, 1649 (1979).Google Scholar
9Gupta, T. K., in Fracture Mechanism of Ceramics, edited by Bradt, R. C., Hasselman, D. P. H., and Evans, F. F. (Plenum, New York, 1978), Vol. 4.Google Scholar
10Garvie, R. C. and Swain, M. V., J. Mater. Sci. 20, 1193 (1985).Google Scholar
11Garvie, R. C., J. Phys. Chem. 69, 1438 (1965).Google Scholar
12Ganesan, P. and Davis, B. H., Ind. Eng. Chem. Prod. Res. Dev. 18, 191 (1979).Google Scholar