Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T07:58:16.190Z Has data issue: false hasContentIssue false

Correlations between sintering conditions and microstructure in ceramics of composition Li0.80Mg0.20 (Ta0.80Ti0.20)O3

Published online by Cambridge University Press:  31 January 2011

J. P. Bonnet
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Universite'de Bordeaux I,351, Cours de la Libération 33405 Talence, France
J. Ravez
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Universite'de Bordeaux I,351, Cours de la Libération 33405 Talence, France
Joo GiTae*
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Universite'de Bordeaux I,351, Cours de la Libération 33405 Talence, France
P. Hagenmuller
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Universite'de Bordeaux I,351, Cours de la Libération 33405 Talence, France
*
a)Materials Science Department, Korea Advanced Institute of Science and Technology, P. O. Box 131, Dong Dae Mun, Seoul, Korea
Get access

Abstract

Two quite different types of microstructures have been detected for MgTiO3-enriched LiTaO3 ceramics corresponding either to small size grains and open porosity or to large size grains with closed porosity and appearance of microcracks. The first structure appears in short sintering processes at relatively low temperature. The textural change is explained by transitory formation of a grain boundary phase that leads to quick coalescence of the small grains.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ravez, J. and Micheron, F., Actual. Chim. 1, 9 (1979).Google Scholar
2Barns, R. L. and Carruthers, J. R., J. Appl. Crystallogr. 3, 395 (1970).CrossRefGoogle Scholar
3Elouadi, B., Zriouil, M., Ravez, J., and Hagenmuller, P., Mater. Res. Bull. 16, 1099 (1981).CrossRefGoogle Scholar
4Torii, Y., Sekiya, T., Yamamoto, T., Kobayashi, K., and Abe, Y., Mater. Res. Bull. 18, 1569 (1983).CrossRefGoogle Scholar
5Elouadi, B., Zriouil, M., Ravez, J., and Hagenmuller, P., Ferroelectrics 56, 21 (1984).Google Scholar
6Joo, G. T., Ravez, J., and Hagenmuller, P., Rev. Chim. Miner. 22, 18 (1985).Google Scholar
7Joo, G. T., Ravez, J., and Hagenmuller, P., Ferroelectric Lett. 4, 73 (1985).Google Scholar
8Ravez, J., Joo, G. T., Senegas, J., and Hagenmuller, P., Jpn. J. Appl. Phys. 24, 1000 (1985).CrossRefGoogle Scholar
9Abrahams, S. C. and Bernstein, J. L., J. Phys. Chem. Solids 28, 1685 (1967).CrossRefGoogle Scholar
10Abrahams, S. C., Hamilton, W. C., and Sequeira, A., J. Phys. Chem. Solids 28, 1693 (1967).Google Scholar
11Joo, G. T., Ravez, J., and Hagenmuller, P., Rev. Chim. Miner. 23, 20 (1986).Google Scholar
12Lange, F. F., J. Am. Ceram. Soc. 67, 83 (1984).CrossRefGoogle Scholar
13Jaffe, B., Cook, W. R. Jr., and Jaffe, H., Piezoelectric Ceramics (Academic, London, 1971).Google Scholar