Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T02:03:40.155Z Has data issue: false hasContentIssue false

Correlation of steady-state creep and changing microstructure in polycrystalline SiC sintered with powder derived via gaseous reactants in an are plasma

Published online by Cambridge University Press:  31 January 2011

R. D. Nixon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University. Box 7907, Raleigh, North Carolina 27695-7907
J. B. Posthill
Affiliation:
Department of Materials Science and Engineering, North Carolina State University. Box 7907, Raleigh, North Carolina 27695-7907
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University. Box 7907, Raleigh, North Carolina 27695-7907
H. R. Baumgartner
Affiliation:
ALCOA Technical Center, ALCOA Center, Pennsylvania 15069
B. R. Rossing
Affiliation:
ALCOA Technical Center, ALCOA Center, Pennsylvania 15069
Get access

Abstract

The mechanisms of steady-slate creep in compression in a sintered SiC produced via sintering of β-SiC powders derived from gaseous reactants in a plasma are have been determined from (1) kinetic data within the ranges of temperature and constant stress of 1770–2020 K and 17–208 MPa, respectively, and (2) the results of transmission electron microscopy (TEM) and other microbeam characterization techniques. The stress exponent was 2.06 ± 0.04; the values of activation energy were 913 ± 13 and 630 ± 14 kJ/mol above and below, respectively, a knee of ∼∼ 1920 K. Gliding dislocations and B4C precipitates, which developed within the grains during creep, and their interaction were the dominant microstructural features of the crept material. Apparent nonmechanical pinning of the dislocations at the precipitates indicated that the latter attracted the dislocations rather than acting as classical obstacles to dislocation movement. A synthesis of this information leads to the conclusion that the controlling creep mechanisms in this SiC were grain boundary sliding accommodated by grain boundary diffusion at T < 1920 K and lattice diffusion at T > 1920 K. The parallel mechanism of dislocation glide also contributed to the total strain.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Djemel, A., Pellisier, B., Castaing, J., and Cadoz, J., presented at the 83rd Annual Meeting of the American Ceramic Society, Washington, DC (unpublished research). For abstract, see Bull. Am. Ceram. Soc. 60, 381 (1981).Google Scholar
2Djemel, A., Cadoz, J., and Philibert, J., in Creep and Fracture of Engineering Materials and Structures, edited by Wilshire, B. and Owen, D. R. J. (Pineridge, Swansea, U.K., 1981), p. 381.Google Scholar
3Farnsworth, P. L. and Coble, R. L., J. Am. Ceram. Soc. 51, 264 (1966).CrossRefGoogle Scholar
4Francis, T. L. and Coble, R. L., J. Am. Ceram. Soc. 52, 115 (1968).CrossRefGoogle Scholar
5Tanaka, H. and Inomata, Y., Yogyo-Kyokai-Shi 93, 45 (1985).Google Scholar
6Coble, R. L., J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
7Nabarro, F. R. N., Philos. Mag. 16, 231 (1967).CrossRefGoogle Scholar
8Herring, C., J. Appl. Phys. 21, 437 (1950).CrossRefGoogle Scholar
9Langdon, T. G., Philos. Mag. 32, 689 (1970).CrossRefGoogle Scholar
10Inomata, Y., J. Surf. Sci. Soc. Jpn. 4, 102, 223 (1983).CrossRefGoogle Scholar
11Inomata, Y., in the Proceedings of the International Symposium on Ceramic Components for Engine, Hakone, Japan, October 1983, edited by Somiya, S., Kanai, E., and Ando, K. (Elsevier Science, New York, 1986), p. 753.Google Scholar
12Lane, J. E., Carter, C. H., and Davis, R. F., J. Am. Ceram. Soc. 71, 281 (1988).CrossRefGoogle Scholar
13Hong, J. D., Newberry, D. E., and Davis, R. F., J. Mater. Sci. 16, 2485 (1981).CrossRefGoogle Scholar
14Hon, M. and Davis, R. F., J. Mater. Sci. 14, 2411 (1979).CrossRefGoogle Scholar
15Davis, R. F., Lane, J. E., Carter, C. H. Jr , Bentley, J., Wadlin, W. H., Griffis, D. P., Linton, R. W., and More, K. L., Scanning Electron Microsc. 3, 1161 (1984).Google Scholar
16More, K. L., Carter, C. H. Jr , Bentley, J., Wadlin, W. H., LaVanier, L., and Davis, R. F., J. Am. Ceram. Soc. 69, 695 (1986).CrossRefGoogle Scholar
17Shaffer, P. T. B., Mater. Res. Bull. 5, 519 (1970).CrossRefGoogle Scholar
18Batha, H. D. and Hardy, L. H., in Silicon Carbide 1973, edited by Marshall, R. C., Faust, J. W. Jr , and Ryan, C. E. (Univ. South Carolina Press, Columbia, SC, 1974), p. 435.Google Scholar
19Vodakov, Yu. A. and Mokhav, E. N., in Silicon Carbide 1973, edited by Marshall, R. C., Faust, F. W. Jr , and Ryan, C. E. (Univ. South Carolina Press, Columbia, SC, 1974), p. 508.Google Scholar
20Murata, Y. and Smoak, R. H., in the Proceedings of the International Symposium on Factors in Densification and Sintering of Oxide and Nonoxide Ceramics, edited by Somiya, Y. and Saito, S. (Gakujutsu Bunken Fukya-kai, Ookayma, Tokyo, Japan, 1978), p. 382.Google Scholar
21Tajima, Y. and Kingery, W. D., J. Am. Ceram. Soc. 65, C27, (1982).CrossRefGoogle Scholar
22Tajima, Y. and Kingery, W. D., J. Mater. Sci. 17, 2289 (1982).CrossRefGoogle Scholar
23Becker, A. J., Meyer, T. N., Smith, F. N., and Edd, J. F., in Proc. Mater. Res. Soc. 98, 335 (1987).CrossRefGoogle Scholar
24Rossing, B. R. and Baumgartner, H. R., Paper 83-C-87 presented at the 89th annual meeting of the American Ceramic Society, Pittsburg, PA. For abstract, see 89th Annual Meeting Abstracts, American Ceramic Society.Google Scholar
25Carter, C. H. Jr , Davis, R. F., and Bentley, J., J. Am. Ceram. Soc. 67, 409 (1984).CrossRefGoogle Scholar
26Carter, C. H. Jr , Stone, C. A., Davis, R. F., and Schaub, D. R., Rev. Sci. Instrum. 51, 1352 (1980).CrossRefGoogle Scholar
27Ogbuji, L. U., Mitchell, T. E., and Heuer, A. H., J. Am. Ceram. Soc. 64, 91 (1981).CrossRefGoogle Scholar
28Ogbuji, L. U., Mitchell, T. E., Heuer, A. H., and Shinozaki, S., J. Am. Ceram. Soc. 64, 100 (1981).CrossRefGoogle Scholar
29Powder Diffraction File, compiled by JCPDS, edited by McClure, W. F. (International Center for Diffraction, Philadelphia, PA, 1986), File No. 35–798.Google Scholar
30Cockayne, D. J. H., J. Microsc. Oxford 98, 116 (1973).CrossRefGoogle Scholar
31Posthill, J. B. and Davis, R. F. (unpublished research, 1987).Google Scholar
32Cockayne, D. J. H., J. Appl. Cryst. 8, 222 (1975).CrossRefGoogle Scholar
33Schroder, J. H. and Artz, E., Scr. Metall. 19, 1129 (1985).CrossRefGoogle Scholar
34Brown, L. M. and Ham, R. K., in Strengthening Methods in Crystals, edited by Kelly, A. and Nicholson, R. B. (Halsted, New York, 1971), pp. 9135.Google Scholar
35Nardone, V. C., Matejczyk, D. E., and Tien, J. K., Acta Metall. 32, 1509 (1984).CrossRefGoogle Scholar