Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-05T09:59:52.934Z Has data issue: false hasContentIssue false

Control of Cobalt Nanoparticle Size by the Germ-growth Method in Inverse Micelle System: Size-dependent Magnetic Properties

Published online by Cambridge University Press:  31 January 2011

X. M. Lin
Affiliation:
Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506
C. M. Sorensen
Affiliation:
Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506
K. J. Klabunde
Affiliation:
Department of Chemistry, Kansas State University, Manhattan, Kansas 66506
G. C. Hajipanayis
Affiliation:
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716
Get access

Abstract

Control of Co particle size was archived by a germ-growth method during inverse micelle synthesis. Magnetic coercivity and blocking were both a function of the particle size, which ranged from 38 to 88 Å. Interparticle dipolar interaction was proven to be important in order to interpret the magnetic properties for large-size particles.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alivisatos, A. P., Science 271, 933 (1996);CrossRefGoogle Scholar
Shi, J., Gider, S., Babcock, D., and Awschalom, D.D., Science 271, 937 (1996).CrossRefGoogle Scholar
2.Halperin, W.P., Rev. Mod. Phys. 58, 533 (1986).CrossRefGoogle Scholar
3.Micic, O.I., Cheong, H.M., Fu, H., Zunger, A., Sprague, J.R., Mascarenhas, A., and Nozik, A.J., J. Phys. Chem. B 101, 4904 (1997).CrossRefGoogle Scholar
4.Billas, I. M. L., Chatelain, A., and de Heer, W. A., Science 265, 1682 (1994);CrossRefGoogle Scholar
Billas, I.M. L., Chatelain, A., and de Heer, W. A., J. Magn. Magn. Mater. 168, 64 (1997);CrossRefGoogle Scholar
Douglass, D.C., Cox, A. J., Bucher, J. P., and Bloomfield, L.A., Phys. Rev. B 47, 12874 (1993).CrossRefGoogle Scholar
5.Morse, M.D., Geusic, M.E., Heath, J.R., and Smalley, R.E., J. Chem. Phys. 83, 2293 (1985).CrossRefGoogle Scholar
6.Wilcoxon, J. P., Williamson, R. L., and Baughman, R., J. Chem. Phys. 98, 9933 (1993).CrossRefGoogle Scholar
7.Motte, L., Billoudet, F., and Pileni, M. P., J. Phys. Chem. 99, 16425 (1995);CrossRefGoogle Scholar
Tanori, J. and Pileni, M. P., Langmuir 13, 639 (1997).CrossRefGoogle Scholar
8.Lin, X.M., Sorensen, C.M., Klabunde, K.J., and Hajipanayis, G.C., Langmuir 14, 7140 (1998).CrossRefGoogle Scholar
9.Glavee, G.N., Klabunde, K.J., Sorensen, C.M., and Hajipanayis, G.C., Langmuir 9, 162 (1993);CrossRefGoogle Scholar
Glavee, G. N., Klabunde, K. J., Sorensen, C.M., and Hajipanayis, G. C., Inorg. Chem. 32, 474 (1993).CrossRefGoogle Scholar
10.Schmid, G., Chem. Rev. 92, 1709 (1992).CrossRefGoogle Scholar
11.Cullity, B. D., Introduction to Magnetic Materials (Addison-Wesley, London, 1972), p. 414.Google Scholar
12.Neel, L. C., Roy. Acad. Sci. 228, 664 (1949).Google Scholar
13.El-Hilo, M., O'Grady, K., and Chantrell, R.W., J. Magn. Magn. Mater. 114, 295 (1992).CrossRefGoogle Scholar
14.Dormann, J. L., Bessasis, L., and Fiorani, D., J. Phys. C. 21, 2015 (1988).CrossRefGoogle Scholar
15.Sucksmith, W., Thompson, F. R.S, and Thompson, J. E., Proc. Roy. Soc. London 225, 362 (1954).Google Scholar
16.Cullity, B. D., Introduction to Magnetic Materials (Addison-Wesley, London, 1972), p. 236.Google Scholar
17.Billas, I. M. L., Becker, A. J., Chatelain, A., and de Heer, W. A., Phys. Rev. Lett. 71, 4067 (1993).CrossRefGoogle Scholar
18.Bucher, J. P. and Bloomfield, L.A., Phys. Rev. B 45, 2537 (1992).CrossRefGoogle Scholar
19.Cullity, B. D., Introduction to Magnetic Materials (Addison-Wesley, London, 1972), p. 415.Google Scholar