Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T11:01:06.729Z Has data issue: false hasContentIssue false

Compressive strengths of PEG gels with glycerol and bioglass particles

Published online by Cambridge University Press:  04 March 2019

Ariel Golshan
Affiliation:
Department of Engineering, Hofstra University, Hempstead, New York 11549, USA
Jenesis A. Curtis
Affiliation:
Department of Biology, Hofstra University, Hempstead, New York 11549, USA
Vasilios Lianos
Affiliation:
Department of Biology, Hofstra University, Hempstead, New York 11549, USA
Sina Y. Rabbany
Affiliation:
Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, New York 11549, USA
Roche C. de Guzman*
Affiliation:
Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, New York 11549, USA
*
a)Address all correspondence to this author. e-mail: roche.c.deguzman@hofstra.edu
Get access

Abstract

Poly(ethylene glycol) (PEG)-based materials can potentially be used as biomechanical matrices in regenerative medicine and tissue engineering implants including the replacement of intervertebral (IV) disks. Glycerol and other generally recognized as safe (GRAS) plasticizers (low-MW PEG, propylene glycol, and sorbitol) were added to the bulk PEG matrix and gelled using chemical and photochemical methods at different temperatures (21, 37, 59, and 80 °C) and pressures (0 and 90 MPa gauge) settings, and their compression testing properties were acquired and analyzed. Surface incorporation of custom-made bioactive glass particles shortened the blood clotting time (78% compared to no glass particles), while alginate and laponite additives improved the gel’s mechanical properties to 645 kPa compressive modulus, 12% yield strain, and 79 kPa yield strength. This IV disk-modeled hydrogel system endured the cyclic loading and unloading tests at 4% compressive strain indicative of an elastic response, but required improvement to its biomechanical tolerance for downstream bioengineering applications.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hahn, M.S., Miller, J.S., and West, J.L.: Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679 (2006).CrossRefGoogle Scholar
Patel, P.N., Smith, C.K., and Patrick, C.W.: Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue. J. Biomed. Mater. Res., Part A 73, 313 (2005).CrossRefGoogle ScholarPubMed
Arcaute, K., Mann, B.K., and Wicker, R.B.: Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng. 34, 1429 (2006).CrossRefGoogle ScholarPubMed
Cruise, G.M., Scharp, D.S., and Hubbell, J.A.: Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19, 1287 (1998).CrossRefGoogle ScholarPubMed
Halstenberg, S., Panitch, A., Rizzi, S., Hall, H., and Hubbell, J.A.: Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3, 710 (2002).CrossRefGoogle ScholarPubMed
Varghese, S., van der Schaft, D., and van Spreeuwel, A.: Improving the properties of PEGDA hydrogels by adding clay particles, without reducing the biocompatibility. Biomech. Tissue Eng. 9, 36 (2009).Google Scholar
Iatridis, J.C., Nicoll, S.B., Michalek, A.J., Walter, B.A., and Gupta, M.S.: Role of biomechanics on intervertebral disc degeneration and regenerative therapies: What needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 13, 243 (2013).CrossRefGoogle ScholarPubMed
Schutgens, E.M., Tryfonidou, M.A., Smit, T.H., Oner, F.C., Krouwels, A., Ito, K., and Creemers, L.B.: Biomaterials for intervertebral disc regeneration: Past performance and possible future strategies. Eur. Cells Mater. 30, 210 (2015).CrossRefGoogle ScholarPubMed
Khandaker, M., Orock, A., Tarantini, S., White, J., and Yasar, O.: Biomechanical performances of networked polyethylene glycol diacrylate (PEGDA): Effect of photo initiator concentration, temperature, and incubation time. Int. J. Biomater. 2016, 3208312 (2016).CrossRefGoogle Scholar
Sejidov, F.T., Mansoori, Y., and Goodarzi, N.: Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition. J. Mol. Catal. A: Chem. 240, 186 (2005).Google Scholar
Vieira, M.G.A., da Silva, M.A., dos Santos, L.O., and Beppu, M.M.: Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 47, 254 (2011).CrossRefGoogle Scholar
López-Castejón, M.L., Bengoechea, C., García-Morales, M., and Martínez, I.: Effect of plasticizer and storage conditions on thermomechanical properties of albumen/tragacanth based bioplastics. Food Bioprod. Process. 95, 264 (2015).CrossRefGoogle Scholar
Vesterinen, E., Suortti, T., and Autio, K.: Effects of preparation temperature on gelation properties and molecular structure of high-amylose maize starch. Cereal Chem. 78, 442 (2001).CrossRefGoogle Scholar
Kim, B.: Effects of pH/temperature on the swelling behavior and rheological properties of hydrogel. In Chemical Engineering (University of Southern California, Los Angeles, California, 2010); p. 191.Google Scholar
Elliott, J.E., Macdonald, M., Nie, J., and Bowman, C.N.: Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45, 1503 (2004).CrossRefGoogle Scholar
Jones, D.S., Andrews, G.P., and Gorman, S.P.: Characterization of crosslinking effects on the physicochemical and drug diffusional properties of cationic hydrogels designed as bioactive urological biomaterials. J. Pharm. Pharmacol. 57, 1251 (2005).CrossRefGoogle ScholarPubMed
Annabi, N., Mithieux, S.M., Weiss, A.S., and Dehghani, F.: The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials 30, 1 (2009).CrossRefGoogle Scholar
Bron, J.L., Vonk, L.A., Smit, T.H., and Koenderink, G.H.: Engineering alginate for intervertebral disc repair. J. Mech. Behav. Biomed. Mater. 4, 1196 (2011).CrossRefGoogle ScholarPubMed
Pawar, S.N. and Edgar, K.J.: Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 33, 3279 (2012).CrossRefGoogle ScholarPubMed
Tomas, H., Alves, C.S., and Rodrigues, J.: Laponite®: A key nanoplatform for biomedical applications? Nanomedicine 14, 24072420 (2017).CrossRefGoogle ScholarPubMed
Hong, S., Sycks, D., Chan, H.F., Lin, S., Lopez, G.P., Guilak, F., Leong, K.W., and Zhao, X.: 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035 (2015).CrossRefGoogle ScholarPubMed
Baino, F., Hamzehlou, S., and Kargozar, S.: Bioactive glasses: Where are we and where are we going? J. Funct. Biomater. 9 126 (2018).CrossRefGoogle ScholarPubMed
Golshan, A., Curtis, J.A., Lianos, V., Rabbany, S.Y., and de Guzman, R.C.: Compressive Strengths of PEG Gels with Glycerol and Bioglass Particles (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 2018); p. 405779.Google Scholar
Zhang, Y., Rempel, C., and Liu, Q.: Thermoplastic starch processing and characteristics—A review. Crit. Rev. Food Sci. Nutr. 54, 1353 (2014).CrossRefGoogle ScholarPubMed
Lerbret, A., Mason, P.E., Venable, R.M., Cesaro, A., Saboungi, M.L., Pastor, R.W., and Brady, J.W.: Molecular dynamics studies of the conformation of sorbitol. Carbohydr. Res. 344, 2229 (2009).CrossRefGoogle ScholarPubMed
Kaewprachu, P., Osako, K., and Rawdkuen, S.: Effects of plasticizers on the properties of fish myofibrillar protein film. J. Food Sci. Technol. 55, 3046 (2018).CrossRefGoogle ScholarPubMed
Wagh, Y.R., Pushpadass, H.A., Emerald, F.M., and Nath, B.S.: Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese. J. Food Sci. Technol. 51, 3767 (2014).CrossRefGoogle ScholarPubMed
Dutta, S. and Dhara, D.: Effect of preparation temperature on salt-induced deswelling and pattern formation in poly(N-isopropylacrylamide) hydrogels. Polymer 76, 62 (2015).CrossRefGoogle Scholar
Ciepluch, K., Radulescu, A., Hoffmann, I., Raba, A., Allgaier, J., Richter, D., and Biehl, R.: Influence of PEGylation on domain dynamics of phosphoglycerate kinase: PEG acts like entropic spring for the protein. Bioconjugate Chem. 29, 1950 (2018).CrossRefGoogle ScholarPubMed
Golovchak, R., Thapar, P., Ingram, A., Savytskii, D., and Jain, H.: Influence of phase separation on the devitrification of 45S5 bioglass. Acta Biomater. 10, 4878 (2014).CrossRefGoogle ScholarPubMed
Kowal, T.J., Golovchak, R., Chokshi, T., Harms, J., Thamma, U., Jain, H., and Falk, M.M.: Role of phase separation on the biological performance of 45S5 Bioglass®. J. Mater. Sci.: Mater. Med. 28, 161 (2017).Google Scholar
Ostomel, T.A., Shi, Q., and Stucky, G.D.: Oxide hemostatic activity. J. Am. Chem. Soc. 128, 8384 (2006).CrossRefGoogle ScholarPubMed
Pourshahrestani, S., Kadri, N.A., Zeimaran, E., Gargiulo, N., Samuel, S., Naveen, S.V., Hasikin, K., Kamarul, T., and Towler, M.R.: Comparative efficacy of hemorrhage control of a novel mesoporous bioactive glass versus two commercial hemostats. Biomed. Mater. 13, 025020 (2018).CrossRefGoogle ScholarPubMed
Tulyaganov, D., Abdukayumov, K., Ruzimuradov, O., Hojamberdiev, M., Ionescu, E., and Riedel, R.: Effect of alumina incorporation on the surface mineralization and degradation of a bioactive glass (CaO–MgO–SiO2–Na2O–P2O5–CaF2)-glycerol paste. Materials 10, 115 (2017).CrossRefGoogle Scholar
Wilke, H.J., Neef, P., Caimi, M., Hoogland, T., and Claes, L.E.: New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24, 755 (1999).CrossRefGoogle ScholarPubMed
Schmidt, H., Shirazi-Adl, A., Schilling, C., and Dreischarf, M.: Preload substantially influences the intervertebral disc stiffness in loading–unloading cycles of compression. J. Biomech. 49, 1926 (2016).CrossRefGoogle ScholarPubMed
Li, S., Patwardhan, A.G., Amirouche, F.M., Havey, R., and Meade, K.P.: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. J. Biomech. 28, 779 (1995).CrossRefGoogle ScholarPubMed
Salari-Sharif, L., Schaedler, T.A., and Valdevit, L.: Energy dissipation mechanisms in hollow metallic microlattices. J. Mater. Res. 29, 1755 (2014).CrossRefGoogle Scholar
Zhu, Y., Kang, G., Yu, C., and Poh, L.H.: Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues. J. Mech. Behav. Biomed. Mater. 61, 397 (2016).CrossRefGoogle ScholarPubMed
Perrini, M., Mauri, A., Ehret, A.E., Ochsenbein-Kolble, N., Zimmermann, R., Ehrbar, M., and Mazza, E.: Mechanical and microstructural investigation of the cyclic behavior of human amnion. J. Biomech. Eng. 137, 061010 (2015).CrossRefGoogle ScholarPubMed
de Guzman, R.C. and Rabbany, S.Y.: PEG-immobilized keratin for protein drug sequestration and pH-mediated delivery. J. Drug Delivery 2016, 1 (2016).CrossRefGoogle ScholarPubMed
Sheen, B. and de Guzman, R.C.: Electroresponsive PEG-chitosan matrix for anion release. Biomater. Tissue Technol. 1, 1 (2017).Google Scholar
Greenspan, D.C. and Hench, L.L.: Chemical and mechanical behavior of bioglass-coated alumina. J. Biomed. Mater. Res. 10, 503 (1976).CrossRefGoogle ScholarPubMed
Lin, K., Chang, J., Liu, Z., Zeng, Y., and Shen, R.: Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics. J. Eur. Ceram. Soc. 29, 2937 (2009).CrossRefGoogle Scholar