Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-23T06:26:19.478Z Has data issue: false hasContentIssue false

Comparative measurement of residual stress in diamond coatings by low-incident-beam-angle-diffraction and micro-Raman spectroscopy

Published online by Cambridge University Press:  31 January 2011

H. Mohrbacher
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven, Belgium
K. Van Acker
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven, Belgium
B. Blanpain
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven, Belgium
P. Van Houtte
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven, Belgium
J-P. Celis
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven, Belgium
Get access

Abstract

Two experimental techniques for the quantitative measurement of residual stress in thin polycrystalline diamond coatings have been developed. The x-ray low-incident-beam-angle-diffraction (LIBAD) allows one to measure the lattice strain with well-defined in-depth information, while micro-Raman spectroscopy permits one to accurately measure the frequencies of the zone-center optical phonons of diamond which are related to the lattice strain. The interpretation of the measured information in terms of residual stress is outlined for both techniques. The residual stress data obtained by either method in thin CVD diamond coatings were found to be in excellent agreement. The sign and magnitude of the balanced biaxial stress in the coating plane depend mainly on the substrate material used for the diamond deposition. Compressive stress was present in diamond coatings deposited on WC-Co substrates, whereas tensile stress was found in those on SiAlON substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Spear, K. E., J. Am. Ceram. Soc. 72 (2), 171 (1989).CrossRefGoogle Scholar
2.Bull, S. J. and Matthews, A., Diamond Relat. Mater. 1, 1049 (1992).CrossRefGoogle Scholar
3.Doerner, M.F. and Nix, W.D., CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).CrossRefGoogle Scholar
4.Schwarzbach, D., Haubner, R., and Lux, B., Diamond Relat. Mater. 3, 757 (1994).CrossRefGoogle Scholar
5.VanDamme, N. S., Nagle, D.C., and Winzer, S.R., Appl. Phys. Lett. 58 (25), 2919 (1991).CrossRefGoogle Scholar
6.Chalker, P. R., Jones, A. M., Johnston, C., and Buckley-Golder, I. M., Surf. Coat. Technol. 47, 365 (1991).CrossRefGoogle Scholar
7.Yoshikawa, M., Katagiri, G., Ishida, H., Ishitani, A., Ono, M., and Matsumura, K., Appl. Phys. Lett. 55 (25), 2608 (1989).CrossRefGoogle Scholar
8.Knight, D. S. and White, W.B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
9.Gheeraert, E., Deneuville, A., and Bonnot, A.M., Diamond Relat. Mater. 1, 525 (1992).CrossRefGoogle Scholar
10.Ager, J. W. and Drory, M.D., Phys. Rev. B 48, 2601 (1993).CrossRefGoogle Scholar
11.De Buyser, L., Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium (1993).Google Scholar
12.Van Acker, K., De Buyser, L., Celis, J.P., and Van Houtte, P., J. Appl. Crystallogr. 27, 56 (1994).CrossRefGoogle Scholar
13.Van Acker, K., Mohrbacher, H., Blanpain, B., Van Houtte, P., and Celis, J. P., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H., Weihs, T.P., Sanchez, J. E. Jr., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 677.Google Scholar
14.De Wolf, I., Vanhellemont, J., Romano-Rodriguez, A., Norström, H., and Maes, H.E., J. Appl. Phys. 71 (2), 898 (1992).CrossRefGoogle Scholar
15.Noyan, I. and Cohen, J., Residual Stress (Springer-Verlag, New York, 1987).CrossRefGoogle Scholar
16.Delhez, R., De Keijser, T. H., and Mittermeijer, E. J., Surf. Eng. 3, 331 (1987).CrossRefGoogle Scholar
17.Urusovskay, A. A., in Modern Crystallography IV, edited by Shuvalov, L.A., Springer Series in Solid-State Sciences (1988), Vol. 37, p. 67.Google Scholar
18.Serruys, W., Van Houtte, P., and Aernoudt, E., Residual Stresses in Science and Technology, edited by Macherauch, E. and Hauck, V. (DGM Informationsgesellschaft-Verlag, Oberursel, 1987), p. 417.Google Scholar
19.Spear, K. E., Phelps, A. W., and White, W. B., J. Mater. Res. 5, 2277 (1990).CrossRefGoogle Scholar
20.Mitra, S. S., Brafman, O., Daniels, W. B., and Crawford, R.K., Phys. Rev. 186, 942 (1969).CrossRefGoogle Scholar
21.Grimsditch, M.H., Anastassakis, E., and Cardona, M., Phys. Rev. B 18, 901 (1978).CrossRefGoogle Scholar
22.Hanfland, M., Syassen, K., Fahy, S., Louie, S. G., and Cohen, M. L., Phys. Rev. B 31, 6896 (1985).CrossRefGoogle Scholar
23.Boppart, H., van Straaten, J., and Silvera, I. F., Phys. Rev. B 32, 1423 (1985).CrossRefGoogle Scholar
24.Anatassakis, E. and Burstein, E., J. Phys. Chem. Solids 32, 563 (1971).CrossRefGoogle Scholar
25.LeGrice, Y. M., Nemanich, R. J., Glass, J.T., Lee, Y.H., Rudder, R.A., and Markunas, R.J., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 219.Google Scholar
26.Ager, J. W., Veirs, D.K., and Rosenblatt, G.M., Phys. Rev. B 43, 6491 (1991).CrossRefGoogle Scholar
27.Yoshikawa, M., Mori, Y., Maegawa, M., Katagiri, G., Ishida, H., and Ishitani, A., Appl. Phys. Lett. 62 (24), 3114 (1993).CrossRefGoogle Scholar
28.Johnston, C., Crossley, A., Chalker, P. R., Bukley-Golder, I.M., and Kobashi, K., Diamond Relat. Mater. 1, 450 (1992).CrossRefGoogle Scholar