Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-09T17:55:01.564Z Has data issue: false hasContentIssue false

Chill-cast in situ composites in the pseudo-ternary Mg–(Cu,Ni)–Y glass-forming system: Microstructure and compressive properties

Published online by Cambridge University Press:  03 March 2011

Han Ma
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Ling-Ling Shi
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Jian Xu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
En Ma
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
Get access

Abstract

Starting with a bulk metallic glass-forming alloy Mg65Cu18Ni6Y11, we prepared in situ composites by increasing the Mg content in a series of alloys, Mgx(Cu0.51Ni0.17Y0.32)100−x (65 ≤ x ≤ 90), via copper mold casting of rods 4 mm in diameter. The fully glassy alloy at x = 65 showed a compressive fracture strength of 755 MPa but no observable macroscopic plasticity prior to failure. Metallic glass-based composites were formed when the Mg content was increased. For x > 80, the glassy phase no longer existed in the as-cast rods. In the composition range of 80 ≤ x ≤ 85, needle-shaped Mg solution with a 14H-type long period stacking (LPS) structure appeared as the primary phase in the as-cast microstructure. On further increase of the Mg content up to x = 90, the solidified primary phase became 2H-Mg, coexisting with the remaining eutectic structure. The best combination of mechanical properties was obtained for the alloy at x = 81.5, which showed a fracture strength of 665 MPa and a compressive plastic strain of 11.6%. The specific strength of this alloy was 2.8 × 105 N m kg−1, much higher than conventional cast magnesium alloys. The mechanical properties are discussed in light of the phase selection and microstructural features uncovered in microscopy examinations.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pampilo, C.A. and Chen, H.S.: Compressive plastic deformation of a bulk metallic glass. Mater. Sci. Eng. 13, 181 (1974).CrossRefGoogle Scholar
2Donovan, P.E.: A yield criterion for Pd40Ni40P20 metallic glass. Acta Mater. 37, 45 (1989).CrossRefGoogle Scholar
3Sergueeva, A.V., Mara, N.A., Kuntz, J.D., Lavernia, E.J., and Mukherjee, A.K.: Shear band formation and ductility in bulk metallic glass. Philos. Mag. 85, 2671 (2005).CrossRefGoogle Scholar
4Inoue, A., Shen, B.L., and Chang, C.T.: Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater. 52, 4093 (2004).CrossRefGoogle Scholar
5Xu, D.H., Lohwongwatana, B., Duan, G., Johnson, W.L., and Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series—Cu100−xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of Cu64Zr36 bulk glass. Acta Mater. 52, 2621 (2004).CrossRefGoogle Scholar
6Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
7Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).CrossRefGoogle Scholar
8Fan, C., Ott, R.T., and Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).CrossRefGoogle Scholar
9Ma, H., Xu, J., and Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).CrossRefGoogle Scholar
10Lee, J.C., Kim, Y.C., Ann, J.P., Lee, S.H., and Lee, B.J.: Strain hardening of an amorphous matrix composite due to deformation-induced nanocrystallization during quasistatic compression. Appl. Phys. Lett. 84, 2781 (2004).CrossRefGoogle Scholar
11Fan, C. and Inoue, A.: Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl. Phys. Lett. 77, 46 (2000).CrossRefGoogle Scholar
12Lee, S.W., Huh, M.Y., Fleury, E., and Lee, J.C.: Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 54, 349 (2006).CrossRefGoogle Scholar
13Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., and Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005).CrossRefGoogle Scholar
14He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle ScholarPubMed
15Ma, E.: Controlling plastic instability. Nat. Mater. 2, 7 (2003).CrossRefGoogle ScholarPubMed
16Louzguine, D.V., Louzguina, L.V., Kato, H., and Inoue, A.: Investigation of Ti–Fe–Co bulk alloys with high strength and enhanced ductility. Acta Mater. 53, 2009 (2005).CrossRefGoogle Scholar
17Das, J., Löser, W., Kühn, U., Eckert, J., Roy, S.K., and Schultz, L.: High-strength Zr–Nb–(Cu,Ni,Al) composites with enhanced plasticity. Appl. Phys. Lett. 82, 4690 (2003).CrossRefGoogle Scholar
18Shi, L.L., Ma, H., Liu, T., Xu, J., and Ma, E.: Microstructure and compressive properties of chill-cast Mg–Al–Ca alloys. J. Mater. Res. 21, 613 (2006).CrossRefGoogle Scholar
19Kojima, Y.: Project of platform science and technology for advanced magnesium alloys. Mater Trans. 42, 1154 (2001).CrossRefGoogle Scholar
20Mordike, B.L. and Ebert, T.: Magnesium-properties-applications-potential. Mater. Sci. Eng., A 302, 37 (2001).CrossRefGoogle Scholar
21Luo, A.A.: Recent magnesium alloy development for elevated temperature applications. Int. Mater. Rev. 49, 13 (2004).CrossRefGoogle Scholar
22Schumann, S.: The paths and strategies for increased magnesium applications in vehicles. Mater. Sci. Forum 488–489, 1 (2005).CrossRefGoogle Scholar
23Inoue, A., Kato, A., Zhang, T., Kim, S.G., and Masumoto, T.: Mg−Cu−Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans., JIM 32, 609 (1991).CrossRefGoogle Scholar
24Kang, H.G., Park, E.S., Kim, W.T., and Kim, D.H.: The effect of Ag addition on the glass-forming ability of Mg–Cu–Y metallic glass alloys. J. Non-Cryst. Solids 279, 154 (2001).Google Scholar
25Amiya, K. and Inoue, A.: Thermal stability and mechanical properties of Mg–Y–Cu–M (M = Ag, Gd) bulk amorphous alloys. Mater. Trans., JIM 41, 1460 (2000).CrossRefGoogle Scholar
26Men, H. and Kim, D.H.: Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability under air atmosphere. J. Mater. Res. 18, 1502 (2003).CrossRefGoogle Scholar
27Yuan, G.Y., Qin, C.L., and Inoue, A.: Mg-based bulk glassy alloys with high strength above 900 MPa and plastic strain. J. Mater. Res. 20, 394 (2005).CrossRefGoogle Scholar
28Xi, X.K., Wang, R.J., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Glass-forming Mg–Cu–RE (RE = Gd, Pr, Nd, Tb, Y, and Dy) alloys with strong oxygen resistance in manufacturability. J. Non-Cryst. Solids 344, 105 (2004).CrossRefGoogle Scholar
29Gu, X., Shiflet, G.J., Guo, F.Q., and Poon, S.J.: Mg–Ca–Zn bulk metallic glasses with high strength and significant ductility. J. Mater. Res. 20, 1935 (2005).CrossRefGoogle Scholar
30Tamuru, T., Amiya, K., Rachmat, R.S., Mizutani, Y., and Miwa, K.: Electromagnetic vibration process for producing bulk metallic glasses. Nat. Mater. 4, 289 (2005).CrossRefGoogle Scholar
31Ma, H., Ma, E., and Xu, J.: A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability. J. Mater. Res. 18, 2288 (2003).CrossRefGoogle Scholar
32Ma, H., Zheng, Q., Xu, J., Li, Y., and Ma, E.: Doubling the critical size for bulk metallic glass formation in the Mg–Cu–Y ternary system. J. Mater. Res. 20, 2252 (2005).CrossRefGoogle Scholar
33Ma, H., Shi, L.L., Xu, J., Li, Y., and Ma, E.: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005).CrossRefGoogle Scholar
34Ma, H., Shi, L.L., Xu, J., Li, Y., and Ma, E.: Improving glass-forming ability of Mg–Cu–Y via substitutional alloying: The effects of Ag versus Ni. J. Mater. Res. 21, 2204 (2006).CrossRefGoogle Scholar
35Zheng, Q., Ma, H., Ma, E., and Xu, J.: Mg–Cu–(Y, Nd) pseudo-ternary bulk metallic glasses: The effects of Nd on glass-forming ability and plasticity. Scripta Mater. 55, 541 (2006).CrossRefGoogle Scholar
36Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
37Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., and Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittle or plasticity. Phys. Rev. Lett. 94, 125510 (2005).CrossRefGoogle ScholarPubMed
38Johnson, W.L. and Samwer, K.: A universal criteria for plastic yielding of metallic glasses with a (T/T g)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).CrossRefGoogle Scholar
39Xu, Y.K., Ma, H., Xu, J., and Ma, E.: Bulk metallic glass based Mg composites with gigapascal strength and plasticity. Acta Mater. 53, 1857 (2005).CrossRefGoogle Scholar
40Itoi, T., Seimiya, T., Kawamura, Y., and Hirohashi, M.: Long period stacking structures observed in Mg97Zn1Y2 alloy. Scripta Mater. 51, 107 (2004).CrossRefGoogle Scholar
41Chino, Y., Mabuchi, M., Hagiwara, S., Iwasaki, H., Yamamoto, A., and Tsubakino, H.: Novel equilibrium two phase Mg alloy with the long-period ordered structure. Scripta Mater. 51, 711 (2004).CrossRefGoogle Scholar
42Inoue, A., Kawamura, Y., Matsushita, M., Hayashi, K., and Koike, J.: Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system. J. Mater. Res. 16, 1894 (2001).CrossRefGoogle Scholar
43Abe, E., Kawamura, Y., Hayashi, K., and Inoue, A.: Long-period ordered structure in a high-strength nanocrystalline Mg–1 at.% Zn–2 at.% Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 50, 3845 (2002).CrossRefGoogle Scholar
44Ping, D.H., Hono, K., Kawamura, Y., and Inoue, A.: Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy. Philos. Mag. Lett. 82, 543 (2002).CrossRefGoogle Scholar
45Amiya, K., Ohsuna, T., and Inoue, A.: Long-period hexagonal structures in melt-spun Mg97Ln2Zn1 (Ln = lanthanide metal) alloys. Mater. Trans. 44, 2151 (2003).CrossRefGoogle Scholar
46Yamasaki, M., Yamasaki, M., Anan, T., Yoshimoto, S., and Kawamura, Y.: Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking bordered structure precipitate. Scripta Mater. 53, 799 (2005).CrossRefGoogle Scholar
47Matucha, K.H.: Structure and properties of nonferrous alloys, in Materials Science and Technology—A Comprehensive Treatment, Vol. 8, edited by Cahn, R.W., Haasen, P. and Kramer, E.J. (VCH Weinheim, Germany, 1996).Google Scholar
48Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L.: Binary Alloy Phase Diagrams, 2nd ed. (ASM Inetrnational, Materials Park, OH, 1990).Google Scholar
49Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K., and Ma, E.: Bulk metallic glass formation in the binary Cu−Zr system. Appl. Phys. Lett. 84, 4029 (2004).CrossRefGoogle Scholar
50Boettinger, W.J.: Growth kinetic limitations in rapid solidification, in Rapidly Solidified Amorphous and Crystalline Alloys, edited by Kear, B.H., Giessen, B.C. and Cohen, M. (Elsevier Science Publishing, North Holland, NY, 1982), p. 15.Google Scholar
51Huang, Y-L., Bracchi, A., Niermann, T., Seibt, M., Danilov, D., Nestler, B., and Schneider, S.: Dendritic microstructure in the metallic glass matrix composite Zr56Ti14Nb5Cu7Ni6Be12. Scripta Mater. 53, 93 (2005).CrossRefGoogle Scholar
52Szuecs, F., Kim, C.P., and Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).CrossRefGoogle Scholar
53Li, Y.: Bulk metallic glasses: Eutectic coupled zone and amorphous formation. JOM 57, 60 (2005).CrossRefGoogle Scholar