Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T08:27:30.501Z Has data issue: false hasContentIssue false

Chemical structure evolution and orientation selection in sol-gel-prepared ferroelectric Pb(Zr,Ti)O3 thin films

Published online by Cambridge University Press:  31 January 2011

L. Fè*
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
G. J. Norga
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
D. J. Wouters
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
H. E. Maes
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
G. Maes
Affiliation:
Chemistry Department, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
*
a)Address all correspondence to this author.laurafe@imec.be
Get access

Abstract

We studied in detail the chemical structure evolution of Pb(Zr1−x, Tix)O3 (PZT) thin films on Pt electrodes during the initial thermal steps of their preparation using an alkoxide-based sol-gel process. Absorption-reflection Fourier transform infrared spectroscopy (AR-FTIRS) was used to monitor chemical reactions occurring in the films on a real temperature scale. We demonstrate that the chemical state of the pyrolyzed film strongly depends on pyrolysis conditions and can have a large effect on the orientation selection in the film. First, residual acetate groups, resulting from incomplete decomposition of the Pb acetate precursor, strengthen the (111) PZT texture component after crystallization. Second, OH bonds, which are seen to remain in the film after pyrolysis under specific conditions, are seen to strengthen the intensity of the PZT(100) reflection. Possible mechanisms behind these observations are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Wouters, D.J., Norga, G., and Maes, H.E., in Ferroelectric Thin Films VII, edited by Jones, R.E., Schwartz, R.W., Summerfelt, S.R., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), p. 381.Google Scholar
2Lakeman, C.D.E. and Payne, D.A., J. Am. Ceram. Soc. 72, 3091 (1992).CrossRefGoogle Scholar
3Kosec, M. and Malic, B., J. Phys. IV 8, 17 (1998).Google Scholar
4Malic, B., Kosec, M., Smolej, K., and Stavber, S., J. Eur. Ceram. Soc. 19, 1345 (1999).CrossRefGoogle Scholar
5Coffman, P.R., Barlingay, C.K., Gupta, A., and Dey, S.K., J. Sol-Gel Sci. Technol. 6, 83 (1996).CrossRefGoogle Scholar
6Lefevre, M.J., Speck, J.S., Schwartz, R.W., Dimos, D., and Lockwood, S.J., J. Mater. Res. 8, 2076 (1996).CrossRefGoogle Scholar
7Spierings, G.A.C.M., Van Zon, J.B.A., Larsen, P.K., and Klee, M., Integr. Ferroelectr. 3, 283 (1993).CrossRefGoogle Scholar
8Willems, G.J., Wouters, D.J., and Maes, H.E., Integr. Ferroelectr. 15, 19 (1997).CrossRefGoogle Scholar
9Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S, Scalese, S., Naumovic, D., Agostino, R.G., Xanthopoulos, N., Mathieu, H., Patthey, L, and Bullock, E.L., J. Appl. Phys. 83, 3835 (1998).CrossRefGoogle Scholar
10Brooks, K.G., Reaney, I.M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).CrossRefGoogle Scholar
11Tani, T., Xu, Z., and Payne, D.A., in Ferroelectric Thin Films III, edited by Myers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 269.Google Scholar
12Chen, S. and Chen, I., J. Am. Ceram. Soc. 77, 2332 (1994).CrossRefGoogle Scholar
13Huang, Z., Zhang, Q., and Whatmore, R.W., J. Appl. Phys. 86, 1662 (1999).CrossRefGoogle Scholar
14Schwartz, R.W., Voigt, J.A., Tuttle, B.A., Payne, D.A., Reichert, T.L., and DaSalla, R.S., J. Mater. Res. 12, 444 (1997).CrossRefGoogle Scholar
15Nouwen, R., Mullens, J., Franco, D., Yperman, J., Van Poucke, L.C, Vib. Spectrosc. 10, 291 (1996).CrossRefGoogle Scholar
16Elvers, B. and Hofmann, H., Ullmann’s Encyclopedia of Industrial Chemistry (VCH, Weinheim, Germany, 1994), Vol. B5, p. 455.Google Scholar
17, L., Norga, G.J., Wouters, D.J., Nouwen, R., and Van Poucke, L.C., J. Sol-Gel Sci. Technol. 19, 149 (2000).CrossRefGoogle Scholar
18Chen, S. and Chen, I., J. Am. Ceram. Soc. 77, 2332 (1994).CrossRefGoogle Scholar
19Chopra, K.L., Thin Film Phenomena (Mc-Graw Hill, New York, 1969), p. 143.Google Scholar
20Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon, Oxford, 1966).Google Scholar