Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T01:10:32.309Z Has data issue: false hasContentIssue false

Characterization of the strain rate dependent behavior of nanocrystalline gold films

Published online by Cambridge University Press:  31 January 2011

L. Wang
Affiliation:
Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849-5341
B.C. Prorok*
Affiliation:
Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849-5341
*
a)Address all correspondence to this author. e-mail: prorok@auburn.edu
Get access

Abstract

The strain rate dependence of freestanding, nanocrystalline gold films was evaluated by a microtensile technique with applied strain rates on the order of 10−4 to 10−6 s−1. Film thickness ranged from 0.25 to 1.00 μm with corresponding grain sizes of 40 to 100 nm. The plastic properties were found to be particularly sensitive to strain rate, film thickness, and grain size, while the elastic property remained relatively unchanged. The thinner films exhibited significant strain rate sensitivity, while the thicker film exhibited only marginal changes. Hall–Petch boundary hardening was observed and dominated plastic flow at larger strain rates, while diffusion-controlled deformation mechanisms appeared to be activated with increasing influence as strain rate decreased. Analysis of dislocation-based and grain-boundary diffusion-related creep suggested that the films were likely experiencing power-law creep as the dominant deformation mechanism in this grain size regime at lower strain rates.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Emery, R.D.Povirk, G.L.: Tensile behavior of free-standing gold films. Part I. Coarse-grained films. Acta Mater. 51, 2067 2003CrossRefGoogle Scholar
2Emery, R.D.Povirk, G.L.: Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater. 51, 2079 2003CrossRefGoogle Scholar
3Chasiotis, I., Bateson, C., Timpano, K., McCarty, A.S., Barker, N.S.Stanec, J.R.: Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films 515, 3183 2007CrossRefGoogle Scholar
4Read, D.T., Cheng, Y.W., Keller, R.R.McColskey, J.D.: Tensile properties of free-standing aluminum thin films. Scripta Mater. 45, 583 2001CrossRefGoogle Scholar
5El-Deiry, P.A.Vinci, R.P.: Strain rate dependent behavior of pure aluminum and copper micro-wires in Thin Films: Stresses and Mechanical Properties IX,, edited by C.S. Ozkan, L.B. Freund, R.C. Cammarata, and H. Gao (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA, 2002), L4.2.1, p. 159CrossRefGoogle Scholar
6Sakai, S., Tanimoto, H.Mizubayashi, H.: Mechanical behavior of high-density nanocrystalline gold prepared by gas deposition method. Acta Mater. 47, 211 1998CrossRefGoogle Scholar
7Mahan, J.Charbeneau, G.T.: A study of certain mechanical properties and the density of condensed specimens made from various forms of pure gold. J. Am. Acad. Gold Foil Oper. 8, 6 1965Google ScholarPubMed
8Nenadovi, T., Bibi, N., Kraljevi, N.Adamov, M.: Mechanical properties of dental gold thin films. Thin Solid Films 34, 211 1976CrossRefGoogle Scholar
9Prorok, B.C.Espinosa, H.D.: Effects of nanometer-thick passivation layers on the mechanical response of thin gold films. J. Nanosci. Nanotechnol. 2, 427 2002CrossRefGoogle ScholarPubMed
10Espinosa, H.D., Prorok, B.C.Fischer, M.: A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J. Mech. Phys. Solids 51, 47 2003CrossRefGoogle Scholar
11Espinosa, H.D., Prorok, B.C.Peng, B.: Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52, 667 2004CrossRefGoogle Scholar
12ASTM E 112-96e1, Standard Test Methods for Determining Average Grain Size, ASTM International West Conshohocken, PA 1996 Available at http:\\www.astm.orgGoogle Scholar
13Thompson, C.V.: Structure evolution during processing of polycrystalline films. Ann. Rev. Mater. Sci. 30, 159 2000CrossRefGoogle Scholar
14Liu, C.L., Cohen, J.M., Adams, J.B.Voter, A.F.: EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt. Surf. Sci. 253, 334 1991CrossRefGoogle Scholar
15Thompson, C.V.Carel, R.: Texture development in polycrystalline thin-films. Mater. Sci. Eng., B. 32, 211 1995CrossRefGoogle Scholar
16Vitos, L., Ruban, A.V., Skriver, H.L.Kollár, J.: The surface energy of metals. Surf. Sci. 411, 186 1998CrossRefGoogle Scholar
17Bunge, H.J.: Texture Analysis in Materials Science Butterworths Toronto 1982Google Scholar
18Schwartz, A.J., Kumar, M.Adams, B.L.: Electron Backscatter Diffraction in Materials Science Kluwer Academic Publishers New York 2000CrossRefGoogle Scholar
19Kocks, U.F., Tomé, C.N., Wenk, H.R.Mecking, H.: Texture and Anisotropy Cambridge University Press Cambridge 2001Google Scholar
20Park, N.J., Field, D.P., Nowell, M.M.Besser, P.R.: Effect of film thickness on the evolution of annealing texture in sputtered copper films. J. Electron. Mater. 34, 1500 2005CrossRefGoogle Scholar
21Sonnweber-Ribic, P., Gruber, P., Dehm, G.Arzt, E.: Texture transition in Cu thin films: Electron backscatter diffraction vs. x-ray diffraction. Acta Mater. 54, 3863 2006CrossRefGoogle Scholar
22Perez-Prado, M.T.Vlassak, J.J.: Microstructural evolution in electroplated Cu thin films. Scripta Mater. 47, 817 2002CrossRefGoogle Scholar
23Zhang, J-M., Xu, K-W.Ji, V.: Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Appl. Surf. Sci. 187, 60 2002CrossRefGoogle Scholar
24Thompson, C.V.Carel, R.: Grain growth and texture evolution in thin films. Mater. Sci. Forum 204–206, 83 1996CrossRefGoogle Scholar
25Thompson, C.V.Carel, R.: Stress and grain growth in thin films. J. Mech. Phys. Solids. 44, 657 1996CrossRefGoogle Scholar
26Nix, W.D.: Mechanical properties of thin films. Metall. Trans. A 20, 2217 1989CrossRefGoogle Scholar
27Neugebauer, C.A., Newkirk, J.B.Vermilyea, D.A.: Structure and Properties of Thin Films John Wiley & Sons New York 1959Google Scholar
28Weihs, T.P., Hong, S., Bravman, J.C.Nix, W.D.: Mechanical deflection of cantilever microbeams—A new technique for testing the mechanical-properties of thin-films. J. Mater. Res. 3, 931 1988CrossRefGoogle Scholar
29Weihs, T.P., Hong, S., Bravman, J.C.Nix, W.D.: Measuring the strength and stiffness of thin film materials by mechanically deflecting cantilever microbeams in Thin Films: Stresses and Mechanical Properties,, edited by J.C. Bravman, W.D. Nix, D.M. Barnett, and D.A. Smith (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 87CrossRefGoogle Scholar
30Baek, C.W., Kim, Y.K., Ahn, Y.Kim, Y.H.: Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures. Sens. Actuators, A Phys. 117, 17 2005CrossRefGoogle Scholar
31Wang, L.Prorok, B.C.: Investigation of the influence of grain size, texture and orientation on the mechanical behavior of freestanding polycrystalline gold films in Mechanics of Nanoscale Materials and Devices, edited by A. Misra, J.P. Sullivan, H. Huang, K. Lu, and S. Asif (Mater. Res. Soc. Symp. Proc. 924E, Warrendale, PA, 2006), 0924-Z03-13.CrossRefGoogle Scholar
32Haque, M.A.Saif, M.T.A.: Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. Proc. Natl. Acad. Sci. U.S.A. 101, 6335 2004CrossRefGoogle ScholarPubMed
33Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 1989CrossRefGoogle Scholar
34VanSwygenhoven, H.Caro, A.: Plastic behavior of nanophase Ni: A molecular dynamics computer simulation. Appl. Phys. Lett. 71, 1652 1997CrossRefGoogle Scholar
35Schiotz, J., Di Tolla, F.D.Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 1998CrossRefGoogle Scholar
36Lu, L., Li, S.X.Lu, K.: An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scripta Mater. 45, 1163 2001CrossRefGoogle Scholar
37Hall, E.O.: The deformation and ageing of mild steel.3. Discussion of results. Proc. Phys. Soc. London B,64, 747 1951CrossRefGoogle Scholar
38Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 1953Google Scholar
39Ashby, M.F.: Deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 1970CrossRefGoogle Scholar
40Conrad, H.Jung, K.: Effect of grain size from mm to nm on the flow stress and plastic deformation kinetics of Au at low homologous temperatures. Mater. Sci. Eng., A 406, 78 2005CrossRefGoogle Scholar
41Van Swygenhoven, H.Weertman, J.R.: Deformation in nanocrystalline metals. Mater. Today 9, 24 2006CrossRefGoogle Scholar
42Wang, F.Xu, K.: An investigation of nanoindentation creep in polycrystalline Cu thin film. Mater. Lett. 58, 2345 2004Google Scholar
43Gall, K., West, N., Spark, K., Dunn, M.L.Finch, D.S.: Creep of thin film Au on bimaterial Au/Si microcantilevers. Acta Mater. 52, 2133 2004CrossRefGoogle Scholar
44Nabarro, F.R.N.: Creep at very low rates. Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 33, 213 2002CrossRefGoogle Scholar
45Weertman, J.: Creep of polycrystalline aluminium as determined from strain rate tests. J. Mech. Phys. Solids 4, 230 1956CrossRefGoogle Scholar
46Brown, A.M.Ashby, M.F.: On the power-law creep equation. Scripta Metall. 14, 1297 1980CrossRefGoogle Scholar
47Coble, R.L.: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679 1963CrossRefGoogle Scholar
48Mukherjee, A.K., Bird, J.E.Dorn, J.E.: Experimental correlations for high-temperature creep. Trans. ASM 62, 155 1969Google Scholar
49Stocker, R.L.Ashby, M.F.: On the empirical constants in the Dorn equation (dislocation creep). Scripta Metall. 7, 115 1973CrossRefGoogle Scholar
50Hirth, J.P.Lothe, J.: Theory of Dislocations McGraw Hill New York 1968Google Scholar
51Robinson, S.L.Sherby, O.D.: Mechanical behavior of polycrystalline tungsten at elevated temperature. Acta Metall. 17, 109 1969CrossRefGoogle Scholar
52Sakai, S., Tanimoto, H., Kita, E.Mizubayashi, H.: Characteristic creep behavior of nanocrystalline metals found for high-density gold. Phys. Rev. B 66, 214106 2002CrossRefGoogle Scholar
53Ashby, M.F.Verrall, R.A.: Diffusion-accommodated flow and superplasticity. Acta Metall. 21, 149 1973CrossRefGoogle Scholar
54Palumbo, G., Thorpe, S.J.Aust, K.T.: On the contribution of triple junctions to the structure and properties of nanocrystalline materials. Scripta Metall. Mater. 24, 1347 1990CrossRefGoogle Scholar
55Wang, N., Wang, Z., Aust, K.T.Erb, U.: Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall. 43, 519 1995CrossRefGoogle Scholar
56Harris, K.E.King, A.H.: Direct observation of diffusional creep via TEM in polycrystalline thin films of gold. Acta Mater. 46, 6195 1998CrossRefGoogle Scholar
57Yagi, N., Rikukawa, A., Mizubayashi, H.Tanimoto, H.: Deformation by grain rotations in nanocrystalline fcc-metals. Mater. Sci. Eng., A 442, 323 2006CrossRefGoogle Scholar
58Yagi, N., Rikukawa, A., Mizubayashi, H.Tanimoto, H.: Experimental tests of the elementary mechanism responsible for creep deformation in nanocrystalline gold. Phys. Rev. B 74, 144105 2006CrossRefGoogle Scholar
59Cai, B., Kong, Q.P., Lu, L.Lu, K.: Interface controlled diffusional creep of nanocrystalline pure copper. Scripta Mater. 41, 755 1999CrossRefGoogle Scholar
60Wang, D.L., Kong, Q.P.Shui, J.P.: Creep of nanocrystalline Ni–P alloy. Scripta Metall. Mater. 31, 47 1994CrossRefGoogle Scholar
61Deng, J., Wang, D.L., Kong, Q.P.Shui, J.P.: Stress dependence of creep in nanocrystalline Ni-P alloy. Scripta Metall. Mater. 32, 349 1995CrossRefGoogle Scholar
62Sanders, P.G., Rittner, M., Kiedaisch, E., Weertman, J.R., Kung, H.Lu, Y.C.: Creep of nanocrystalline Cu, Pd, and Al–Zr. Nanostruct. Mater. 9, 433 1997CrossRefGoogle Scholar
63Wang, Y.M., Hamza, A.V.Ma, E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 2006CrossRefGoogle Scholar
64Gale, W.F.Totemeier, T.C.Smithells Metals Reference Book, 8th ed. Elsevier 2004Google Scholar
65Frost, H.J.Ashby, M.F.: Deformation Mechanism Maps Pergamon Press New York 1982Google Scholar
66Horvath, J., Birringer, R.Gleiter, H.: Diffusion in nanocrystalline material. Solid State Commun. 62, 319 1987CrossRefGoogle Scholar