Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-05T09:47:50.827Z Has data issue: false hasContentIssue false

Band engineering of type-II ZnO/ZnSe heterostructures for solar cell applications

Published online by Cambridge University Press:  16 December 2011

Jianchao Ni
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Zhiming Wu*
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Xiangan Lin
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Jinjian Zheng
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Shuping Li
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Jing Li
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
Junyong Kang*
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: zmwu@xmu.edu.cn
Get access

Abstract

Two kinds of type-II heterostructures (HSs) of ZnO (wurtzite)/ZnSe (wurtzite) [ZnO (WZ)/ZnSe (WZ)] and ZnO (wurtzite)/ZnSe (zinc blende) [ZnO (WZ)/ZnSe (ZB)] were designed for photovoltaic applications by first-principle calculations. The calculated effective bandgap of 1.51 eV for the ZnO (WZ)/ZnSe (WZ) HS is more favorable for solar cell applications compared to that of 1.69 eV for the ZnO (WZ)/ZnSe (ZB) HS. Furthermore, the electrons and holes are more effectively separated at the interface of ZnO (WZ)/ZnSe (WZ) HS due to the stronger misfit stress field. Finally, a strained ZB ZnSe layer was introduced to transport the separated holes from WZ ZnSe layer, and an optimal structure of ZnO (WZ)/ZnSe (WZ)/ZnSe (ZB) was proposed to realize a solar cell with near-infrared response.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chopra, K.L., Paulson, P.D., and Dutta, V.: Thin-film solar cells: An overview. Prog. Photovoltaics Res. Appl. 12, 69 (2004).CrossRefGoogle Scholar
2.King, R.R., Law, D.C., Edmondson, K.M., Fetzer, C.M., Kinsey, G.S., Yoon, H., Sherif, R.A., and Karam, N.H.: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007).CrossRefGoogle Scholar
3.Beek, W.J.E., Wienk, M.M., and Janssen, R.A.J.: Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv. Mater. 16, 1009 (2004).CrossRefGoogle Scholar
4.Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).CrossRefGoogle ScholarPubMed
5.Kayes, B.M., Atwater, H.A., and Lewis, N.S.: Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).CrossRefGoogle Scholar
6.Zhang, Y., Wang, L., and Mascarenhas, A.: “Quantum coaxial cables” for solar energy harvesting. Nano Lett. 7, 1264 (2007).CrossRefGoogle ScholarPubMed
7.Schrier, J., Demchenko, D.O., Wang, L.W., and Alivisatos, A.P.: Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 7, 2377 (2007).CrossRefGoogle ScholarPubMed
8.Wang, K., Chen, J.J., Zhou, W.L., Zhang, Y., Yan, Y.F., Pern, J., and Mascarenhas, A.: Direct growth of highly mismatched type-II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv. Mater. 20, 3248 (2008).CrossRefGoogle Scholar
9.Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
10.Wu, Z.M., Zhang, Y., Zheng, J.J., Lin, X.G., Chen, X.H., Huang, B.W., Wang, H.Q., Huang, K., Li, S.P., and Kang, J.Y.: An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires. J. Mater. Chem. 21, 6020 (2011).CrossRefGoogle Scholar
11.Kresse, G. and Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
12.Kresse, G. and Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
13.Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
14.Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 7953 (1994).CrossRefGoogle ScholarPubMed
15.Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).CrossRefGoogle ScholarPubMed
16.Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
17.Cheng, X.M. and Chien, C.L.: Magnetic properties of epitaxial Mn-doped ZnO thin films. J. Appl. Phys. 93, 7876 (2003).CrossRefGoogle Scholar
18.Van de Walle, C.G. and Martin, R.M.: Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34, 5621 (1986).CrossRefGoogle Scholar
19.Peressi, M., Binggeli, N., and Baldereschi, A.: Band engineering at interfaces: Theory and numerical experiments. J. Phys. D: Appl. Phys. 31, 1273 (1998).CrossRefGoogle Scholar
20.Zheng, J.J., Wu, Z.M., Yang, W.H., Li, S.P., and Kang, J.Y.: Growth and characterization of type-II ZnO/ZnSe core/shell nanowire arrays. J. Mater. Res. 25, 1272 (2010).CrossRefGoogle Scholar
21.Zhang, Y., Cai, K.H., Li, C., Chen, S.Y., Lai, H.K., and Kang, J.Y.: Strain relaxation in ultrathin SGOI substrates fabricated by multistep Ge condensation method. Appl. Surf. Sci. 255, 3701 (2009).CrossRefGoogle Scholar