Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T11:46:37.544Z Has data issue: false hasContentIssue false

Atomistic study of the competitive relationship between edge dislocation motion and hydrogen diffusion in alpha iron

Published online by Cambridge University Press:  24 May 2011

Shinya Taketomi*
Affiliation:
Department of Mechanical Engineering, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
Ryosuke Matsumoto
Affiliation:
Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
Noriyuki Miyazaki
Affiliation:
Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
*
a)Address all correspondence to this author. e-mail: taketomi@me.saga-u.ac.jp
Get access

Abstract

The interaction between a dislocation and hydrogen is considered to play an important role in hydrogen-related fractures for metals; it has been experimentally reported that hydrogen affects the dislocation mobility. These studies, however, show different macroscopic softening and/or hardening effects in iron, and the interaction between the dislocation and hydrogen remains unclear. In this study, we investigated the occurrence of interactions between a {112}<111> edge dislocation and a hydrogen atom via the estimation of the stress-dependent energy barriers for the dislocation motion and hydrogen diffusion in alpha iron using atomistic calculations. Our results show the existence of boundary stress conditions: dislocation mobility increment (softening) occurs at a lower applied stress, dislocation mobility decrement (hardening) occurs at an intermediate stress, and no effects occur for the steady motion of a dislocation at a higher stress in this analysis condition.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Frohmberg, R.P., Barnett, W.J., and Troiano, A.R.: Delayed failure and hydrogen embrittlement in steel. Trans. ASM 47, 892 (1955).Google Scholar
2.Oriani, R.A. and Josephic, H.: Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall. 22, 1065 (1974).CrossRefGoogle Scholar
3.Oriani, R.A. and Josephic, H.: Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel. Acta Metall. 25, 979 (1977).CrossRefGoogle Scholar
4.Beachem, C.D.: A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall. Trans. 3A, 437 (1972).Google Scholar
5.Birnbaum, H.K. and Sofronis, P.: Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater. Sci. Eng., A 176, 191 (1994).CrossRefGoogle Scholar
6.Sofronis, P. and Birnbaum, H.K.: Mechanics of the hydrogen-dislocation-impurity interactions: Part I increasing shear modulus. J. Mech. Phys. Solids 43, 49 (1995).CrossRefGoogle Scholar
7.Nagumo, M., Nakamura, M., and Takai, K.: Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steel. Metall. Mater. Trans. A 32A, 339 (2001).CrossRefGoogle Scholar
8.Takai, K., Shoda, H., Suzuki, H., and Nagumo, M.: Lattice defects dominationg hydrogen-related failure of metals. Acta Mater. 56, 5158 (2008).CrossRefGoogle Scholar
9.Lynch, S.P.: Environmentally assisted cracking overview of evidence for an adsorption-induced localised-slip process. Acta Metall. 36, 2639 (1988).CrossRefGoogle Scholar
10.Murakami, Y. and Matsunaga, H.: The effect of hydrogen on fatigue properties of steels used for fuel cell system. Int. J. Fatigue 28, 1509 (2006).CrossRefGoogle Scholar
11.Murakami, Y., Kanezaki, T., Mine, Y., and Matsuoka, S.: Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall. Mater. Trans. A 39A, 1327 (2008).CrossRefGoogle Scholar
12.Myers, S.M., Baskes, M.I., Birnbaum, H.K., Corbett, J.W., Deleo, G.G., Estreicher, S.K., Haller, E.E., Jena, P., Johnson, N.M., Kirchheim, R., Pearton, S.J., and Stavola, M.J.: Hydrogen interactions with defects in crystalline solids. Rev. Mod. Phys. 64, 559 (1992).CrossRefGoogle Scholar
13.Han, G., He, J., Fukuyama, S., and Yokogawa, K.: Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures. Acta Mater. 46, 4559 (1998).CrossRefGoogle Scholar
14.Nagumo, M.: Fundamentals of Hydrogen Embrittlement (Uchida Rokakuho, Japan, 2008) p. 167. (in Japanese).Google Scholar
15.Taketomi, S., Matsumoto, R., and Miyazaki, N.: Atomistic simulation of the effects of hydrogen on the mobility of edge dislocation in alpha iron. J. Mater. Sci. 43, 1166 (2008).CrossRefGoogle Scholar
16.Cottrell, A.H.: Dislocations and Plastic Flow in Crystals (Oxford University Press, England, 1953) p. 136.Google Scholar
17.Cottrell, A.H., and Bilby, B.A.: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. Sec. A 62, 49 (2949).CrossRefGoogle Scholar
18.Tapasa, K., Osetsky, Y.N., and Bacon, D.J.: Computer simulation of interaction of an edge dislocation with a carbon interstitial in alpha-iron and dffects on glide. Acta Mater. 55, 93 (2007).CrossRefGoogle Scholar
19.Hu, S.Y., Li, Y.L., Zheng, Y.X., and Chen, L.Q.: Effect of solutes on dislocation motion -a phase- field simulation. Int. J. Plast. 20, 403 (2004).CrossRefGoogle Scholar
20.Hu, S.Y., Choi, J., Li, Y.L., and Chen, L.Q.: Dynamic drag of solute atmosphere on moving edge dislocations-phase-field simulation. J. Appl. Phys. 96, 229 (2004).CrossRefGoogle Scholar
21.Chen, Z.J., Zhang, Q.C., and Wu, X.P.: Dynamic interaction between dislocation and diffusing solutes. Europhys. Lett. 71, 235 (2005).CrossRefGoogle Scholar
22.Rickman, J.M., LeSar, R., and Srolovitz, D.J.: Solute effects on dislocation glide in metals. Acta Mater. 51, 1199 (2003).CrossRefGoogle Scholar
23.Curtin, W.A., Olmsted, D.L., and Hector, L.G. Jr.: A predictive mechanism for dynamic strain ageing in aluminum-magnesium alloys. Nat. Mater. 5, 875 (2006).CrossRefGoogle Scholar
24.Olmsted, D.L., Hector, L.G. Jr., and Curtin, W.A.: Molecular dynamics study of solute strengthening in Al/Mg alloys. J. Mech. Phys. Solids 54, 1763 (2006).CrossRefGoogle Scholar
25.Wang, Y., Srolovitz, D.J., Rickman, J.M., and LeSar, R.: Dislocation motion in the presence of diffusing solutes: A computer simulation study. Acta Mater. 48, 2163 (2000).CrossRefGoogle Scholar
26.Taketomi, S., Matsumoto, R., and Miyazaki, N.: Atomistic study of hydrogen distribution and diffusion around a {112}<111> edge dislocation in alpha iron. Acta Mater. 56, 3761 (2008).CrossRefGoogle Scholar
27.Zhu, T., Li, J., Samanta, A., Leach, A., and Gall, K.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).CrossRefGoogle ScholarPubMed
28.Wen, M., An, B., Fukuyama, S., Yokogawa, K., and Ngan, A.H.M.: Thermally activated model for tensile yielding of pristine single-walled carbon nanotubes with nonlinear elastic deformation. Carbon 47, 2070 (2009).CrossRefGoogle Scholar
29.Warner, D.H. and Curtin, W.A.: Origins and implications of temperature dependent activation energy barriers for dislocation nucleation in fcc metals. Acta Mater. 57, 4267 (2009).CrossRefGoogle Scholar
30.Henkelman, G. and Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).CrossRefGoogle Scholar
31.Jónsson, H., Mills, G., and Jacobsen, K.W.: Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by Berne, B.J., Ciccotti, G., and Coker, D.F. (World Scientific, Singapore, 1998), p. 385.CrossRefGoogle Scholar
32.Wen, M., Xu, X.J., Fukuyama, S., and Yokogawa, K.: Embedded-atom-method functions for the body-centered-cubic iron and hydrogen. J. Mater. Res. 16, 3496 (2001).CrossRefGoogle Scholar
33.Wen, M., Fukuyama, S., and Yokogawa, K.: Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron. Acta Mater. 51, 1767 (2003).CrossRefGoogle Scholar
34.Nedelcu, S. and Kizler, P.: Molecular dynamics simulation of hydrogen-edge dislocation interaction in bcc iron. Phys. Status Solidi A 193, 26 (2002).3.0.CO;2-U>CrossRefGoogle Scholar
35.Hirth, J.P.: Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11A, 861 (1980).CrossRefGoogle Scholar
36.Matsumoto, R., Inoue, Y., Taketomi, S., and Miyazaki, N.: Influence of shear strain on the hydrogen trapped in bcc-Fe: A first-principles-based study. Scr. Mater. 60, 555 (2009).CrossRefGoogle Scholar
37.Oriani, R.A.: The diffusion and trapping of hydrogen in steel. Acta Metall. 18, 147 (1970).CrossRefGoogle Scholar
38.Hirth, J.P. and Lothe, J.: Theory of dislocations, 2nd ed. (Krieger Publishing Company, 1982), p. 541.Google Scholar
39.National Astronomical Observatory: Chronological Science Tables (Maruzen Co., Ltd., Japan, 2003) (in Japanese).Google Scholar
40.Yokobori, T.: Zairyo-Kyodo-Gaku (Gihodo Press, 1955) p. 14. (in Japanese).Google Scholar
41.Honeycutt, J.D. and Andersen, H.C.: Molecular dynamics study of melting and freezing of small lennard-jones clusters. J. Phys. Chem. 91, 4950 (1987).CrossRefGoogle Scholar
42.Takahashi, Y., Tanaka, M., Higashida, K., and Noguchi, H.: Hydrogen-induced slip localization around a quasi-brittle fatigue crack observed by high-voltage electron microscopy. Scr. Mater. 61, 145 (2009).CrossRefGoogle Scholar
43.Takahashi, Y., Tanaka, M., Higashida, K., Yamaguchi, K., and Noguchi, H.: An intrinsic effect of hydrogen on cyclic slip deformation around a {110} fatigue crack in Fe-3.2 wt% Si alloy. Acta Mater. 58, 1972 (2010).CrossRefGoogle Scholar
44.Takahashi, Y., Sakamoto, J., Tanaka, M., Higashida, K., and Noguchi, H.: TEM observation of cyclic deformation around an oblique fatigue crack tip in single-crystalline Fe-3.2 wt% Si alloy. Trans. Japan Soc. Mech. Eng. A. 76, 251 (2010) (in Japanese).CrossRefGoogle Scholar