Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T05:25:54.724Z Has data issue: false hasContentIssue false

Aqueous processing of SiC green sheets I: Dispersant

Published online by Cambridge University Press:  31 January 2011

J. X. Zhang
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050 Shanghai, P. R. China
D. L. Jianga*
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050 Shanghai, P. R. China
S. H. Tana
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050 Shanghai, P. R. China
L. H. Gui
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050 Shanghai, P. R. China
M. L. Ruan
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050 Shanghai, P. R. China
*
a)Address all correspondence to this author.
Get access

Abstract

Poly(ethylene imine) (PEI) has been used as a dispersant for tape casting of SiC powders in aqueous media. The stability of SiC suspensions was studied and characterized in terms of zeta potential, sedimentation, adsorption, and rheology measurements. Zeta potential studies showed that the particle surface was negatively charged in the absence of PEI in the pH 2.5–13 ranges. Adsorptions of PEI increased the zeta potential and led to the shift of isoelectric point from pH 2.4 to pH 10.5. Sedimentation study showed that, in the absence of PEI, SiC slurries were stable around pH 6, while, in the presence of PEI, stabilization could be achieved at a condition of saturated adsorption (1.07 mg/m2) and was related to the high-;affinity adsorption in the pH = 10.5–11.5 range. The rheological measurements showed that SiC slurries (50 vol%) were well stability with slight thixotropical behavior. Finally, the best conditions to obtain a homogeneous stable slurry with high powder loading suitable for tap casting were determined.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hyatt, E.P., Am. Ceram. Soc. Bull. 65, 637 (1986).Google Scholar
2.Mistler, R.E., Am. Ceram. Soc. Bull. 71, 1521 (1992)Google Scholar
3.Kita, K., Fukuda, J., Ohmura, H., and Sakai, T., U.S. Pat. No. 4353958 (1992).Google Scholar
4.Gurak, N.R., Josty, P.L., and Thompson, R.J., Am. Ceram. Soc. Bull. 66, 1495 (1987).Google Scholar
5.Nagata, K., J. Ceram. Soc. Jpn. 101, 1271 (1993).CrossRefGoogle Scholar
6.Chartier, T. and Bruneau, A., J. Eur. Ceram. Soc. 12, 243 (1993).CrossRefGoogle Scholar
7.Hotza, D., Janssen, R., Claussen, N., and Greil, P., in Ceramic Transactions 51, edited by Hausner, H., Messing, G.L., and , S-i.Hirano (The American Ceramic Society, Westerville, OH, 1995), pp. 397401.Google Scholar
8.Nahass, P., Rhine, W.E., Pober, R.L., Bowen, H.K., and Robbins, W.L., Ceramic Transactions, Vol. 15, Materials and Processes in Microelectronic Systems (American Ceramic Society, Westerville, OH, 1990), pp. 355364.Google Scholar
9.Cho, J-M. and Dogan, F., J. Mater. Sci. 36, 2397 (2001).CrossRefGoogle Scholar
10.Feng, J-H. and Dogan, F., Mater. Sci. Eng. A 283, 56 (2000).CrossRefGoogle Scholar
11.Nahass, P., Rhine, W.E., Pober, R.L., Bowen, H.K., and Robbins, W.L., in Ceramic Transactions, Vol. 15, Materials and Processes in Microelectronic Systems (American Ceramic Society, Westerville, OH, 1990), pp. 355364.Google Scholar
12.Hotza, D. and Greil, P., Mater. Sci. Eng. A 202, 206 (1995).Google Scholar
13.Yuping, Z., Dongliang, J., and Greil, P., J. Eur. Ceram. Soc. 20, 1691 (2000).CrossRefGoogle Scholar
14.Yeo, J-G., Jung, Y-G., and Choi, S-C., Mater. Lett. 37, 304 (1998).CrossRefGoogle Scholar
15.Ferreira, J.M. and Diz, H.M.M., Ceram. Int. 25, 491 (1999).CrossRefGoogle Scholar
16.Ferreira, J.M. and Diz, H.M.M., J. Eur. Ceram. Soc. 17, 259 (1997).CrossRefGoogle Scholar
17.Lin, P-K. and Tsai, D-s., J. Am. Ceram. Soc. 80, 365 (1997).CrossRefGoogle Scholar
18.Wang, L-M. and Wei, W-C., J. Ceram. Soc. Jpn. 103, 434 (1995).CrossRefGoogle Scholar
19.Baklouti, S., Pagnoux, C., Chartier, T., and Baumard, J.F., J. Eur. Ceram. Soc. 17, 1387 (1997).CrossRefGoogle Scholar
20.Lidén, E., Bergström, L., Persson, M., and Carlsson, R., J. Eur. Ceram. Soc. 7, 361 (1997).CrossRefGoogle Scholar
21.Assmann, S., Eisele, U., and Boder, H., J. Eur. Ceram. Soc. 17, 309 (1997).Google Scholar
22.Granja, M.F.L., Doreau, F., and Ferreira, J.M.F., Key Eng. Mater. 362 (1997).Google Scholar
23.Passalacqua, E., Freni, S., and Barone, F., Mater. Lett. 34, 257 (1998).CrossRefGoogle Scholar
24.Iller, R.K., The Chemistry of Silica (John Wiley, New York, 1979), pp. 622727.Google Scholar
25.Armistead, C.G., Tyler, A.J., Hambleton, F.H., Mitchell, S.A., and Hockey, J.A., J. Phys. Chem. 73, 3947 (1969).CrossRefGoogle Scholar
26.Feke, D.L., NASA Contract. Rep. 179634 (1987).Google Scholar
27.Anderson, M.A. and Rubin, A.J., Adsorption of Inorganics at Solid-Liquid Interfaces (Ann Arbor Science Publishers, Ann Arbor, MI, 1981).Google Scholar
28.Ferreira, J.M.F. and Diz, H.M.M., J. Eur. Ceram Soc. 10, 59 (1992).CrossRefGoogle Scholar
29.Lindquist, G.M. and Stratton, R.A., J. Colloidal Interface Sci. 55, 45 (1976).Google Scholar
30.Dixon, J.K., Mer, V.K. La, Li, C., Messinger, S., and Linford, H.B., J. Colloidal Interface Sci. 23, 465 (1967).CrossRefGoogle Scholar
31.Winnik, M.A. and Bystryak, S.M., Macromolecules 32, 624 (1999).Google Scholar
32.Byman-Fagerholm, H., Mikkola, P., Rosenholm, J.B., Lidén, E., and Carlsson, R., J. Eur. Ceram. Soc. 19, 41 (1999).CrossRefGoogle Scholar
33.Zhang, J.X., Jiang, D.L., Tan, S.H., Gui, L.H., and Ruan, M.L., J. Am. Ceram. Soc. 84, 2537 (2001).CrossRefGoogle Scholar
34.Chen, Z-C., Ring, T.A., and Lemaître, J., J. Am. Ceram. Soc. 75, 3201 (1992).CrossRefGoogle Scholar
35.Guo, L-C., Zhang, Y., Uchida, N., and Uematsu, K., J. Am. Ceram. Soc. 81, 549 (1998).CrossRefGoogle Scholar
36.Cesarano, J. III, and Aksay, A., J. Am. Ceram. Soc. 71, 250 (1988).Google Scholar
37.Hackley, V.A., J. Am. Ceram. Soc. 80, 2315 (1997).CrossRefGoogle Scholar
38.Albano, M.P. and Garrido, L.B., J. Am. Ceram. Soc. 81, 837 (1998).CrossRefGoogle Scholar
39.Zupancic, A., Lapasin, R., and Kristoffersson, A., J. Eur. Ceram. Soc. 18, 467 (1998).CrossRefGoogle Scholar
40.Sato, T., J. Coat. Technol. 65(825), 113 (1993).Google Scholar
41.Moreno, R., Am. Ceram. Soc. Bull. 71, 1521 (1992).Google Scholar
42.Napper, H., J. Colloid Interface Sci. 58, 390 (1977).CrossRefGoogle Scholar
43.Gutiérrez, C.A. and Moreno, R., Res. Bull. 36, 2059 (2001).CrossRefGoogle Scholar
44.Hackley, V.A., J. Am. Ceram. Soc. 81, 2421 (1998).CrossRefGoogle Scholar
45.Wang, L., Sigmund, W., and Aldinger, F., Mater. Lett. 40, 14 (1997).Google Scholar