Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-26T18:12:22.509Z Has data issue: false hasContentIssue false

An impedance sensor for the detection of formaldehyde vapor using ZnO nanoparticles

Published online by Cambridge University Press:  01 June 2017

Padmanathan Karthick Kannan
Affiliation:
Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India; and School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
Ramiah Saraswathi*
Affiliation:
Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
*
a) Address all correspondence to this author. e-mail: drrsaraswathi@gmail.com, saraswathir@yahoo.com
Get access

Abstract

A highly sensitive impedance sensor operating at room temperature has been developed for the quantitative determination of formaldehyde vapor. Nanostructured zinc oxide (ZnO) was synthesized by chemical reduction and used, in the form of a pellet, as the sensing material. Its performance was compared to that of the pellet made from commercial ZnO. Both samples were characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, ultraviolet–visible spectroscopy, and atomic force microscopy techniques. Changes in impedance caused by formaldehyde in the concentration range from 100 to 800 ppm were measured and Nyquist plots revealed a systematic variation in impedance. The sensor response and formaldehyde concentration are exponentially correlated for both the laboratory synthesized and commercial ZnO samples. However, the lab-synthesized sample displays a better performance in terms of sensitivity, response, recovery, and stability. In addition, the response of the lab-synthesized sample is less sensitive to interferences by reducing gases such as ammonia, ethanol, methanol, and propanol.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Gary L. Messing

References

REFERENCES

Chen, D. and Yuan, Y.J.: Thin-film sensors for detection of formaldehyde: A review. IEEE Sens. J. 15(12), 6749 (2015).CrossRefGoogle Scholar
Salthammer, T., Mentese, S., and Marutzky, R.: Formaldehyde in the indoor environment. Chem. Rev. 110(4), 2536 (2010).CrossRefGoogle ScholarPubMed
Huang, J. and Wan, Q.: Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9(12), 9903 (2009).CrossRefGoogle ScholarPubMed
Hangarter, C.M., Bangar, M., Mulchandani, A., and Myung, N.V.: Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J. Mater. Chem. 20(16), 3131 (2010).CrossRefGoogle Scholar
Wang, Y. and Yeow, J.T.W.: A review of carbon nanotubes-based gas sensors. J. Sensors 2009, 493904 (2009).CrossRefGoogle Scholar
Ratinac, K.R., Yang, W., Ringer, S.P., and Braet, F.: Toward ubiquitous environmental gas sensors—Capitalizing on the promise of graphene. Environ. Sci. Technol. 44(4), 1167 (2010).Google Scholar
Hangarter, C.M., Chartuprayoon, N., Hernández, S.C., Choa, Y., and Myung, N.V.: Hybridized conducting polymer chemiresistive nano-sensors. Nano Today 8(1), 39 (2013).CrossRefGoogle Scholar
Wetchakun, K., Samerjai, T., Tamaekong, N., Liewhiran, C., Siriwong, C., Kruefu, V., Wisitsoraat, A., Tuantranont, A., and Phanichphant, S.: Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors Actuators B Chem. 160(1), 580 (2011).Google Scholar
Eranna, G., Joshi, B.C., Runthala, D.P., and Gupta, R.P.: Oxide materials for development of integrated gas sensors—A comprehensive review. Crit. Rev. Solid State Mater. Sci. 29(3–4), 111 (2004).CrossRefGoogle Scholar
Wang, Z.L.: Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 16(25), R829 (2004).Google Scholar
Chauhan, R., Kumar, A., Umarji, G.G., Mulik, U.P., and Amalnerkar, D.P.: Comparison of optical and photovoltaic properties of ZnO chemically synthesized by using different hydrolyzing agents. J. Solid State Electrochem. 19(1), 161 (2014).CrossRefGoogle Scholar
Krivan, E.P., Ungor, D., Janaky, C., Nemeth, Z., and Visy, C.: Optimization of the photoactivity of conducting polymer covered ZnO nanorod composite electrodes. J. Solid State Electrochem. 19(1), 37 (2014).CrossRefGoogle Scholar
Liu, Z., Ya, J., and Lei, E.: Effects of substrates and seed layers on solution growing ZnO nanorods. J. Solid State Electrochem. 14(6), 957 (2010).CrossRefGoogle Scholar
Makarova, M.V., Macounová, K., and Krtil, P.: The effect of cationic disorder on the optical and electrochemical behavior of nanocrystalline ZnO preparedfrom peroxide precursors. J. Solid State Electrochem. 10(5), 320 (2006).CrossRefGoogle Scholar
Marrani, A.G., Caprioli, F., Boccia, A., Zanoni, R., and Decker, F.: Electrochemically deposited ZnO films: An XPS study on the evolution of their surface hydroxide and defect composition upon thermal annealing. J. Solid State Electrochem. 18(2), 505 (2014).CrossRefGoogle Scholar
Prasad, B.E., Kamath, P.V., and Ranganath, S.: Electrodeposition of ZnO coatings from aqueous Zn(NO3)2 baths: Effect of Zn concentration, deposition temperature, and time on orientation. J. Solid State Electrochem. 16(12), 3715 (2012).Google Scholar
Wang, X., Chen, X., Luo, D., Zhang, Y., Liu, Y., Sun, L., and Liu, Z.: Electrodeposition of ZnO on carbon nanofiber buckypaper. J. Solid State Electrochem. 18(6), 1773 (2014).CrossRefGoogle Scholar
Tellabati, N.V., Waghadkar, Y.B., Roy, A., Shinde, M.D., Gosavi, S.W., Amalnerkar, D.P., and Chauhan, R.: Optical and photovoltaic properties of temperature-dependent synthesis of ZnO nanobelts, nanoplates, and nanorods. J. Solid State Electrochem. 19(8), 2413 (2015).Google Scholar
Xu, F., Lu, Y., Xie, Y., and Liu, Y.: Seed layer-free electrodeposition and characterization of vertically aligned ZnO nanorod array film. J. Solid State Electrochem. 14(1), 63 (2010).CrossRefGoogle Scholar
Wang, S., Wang, P., Xiao, C., Li, Z., Xiao, B., Zhao, R., Yang, T., and Zhang, M.: Facile fabrication and enhanced gas sensing properties of the ultrathin ZnO nanoplates. Mater. Lett. 131, 358 (2014).Google Scholar
Yao, M., Hu, P., Cao, Y., Xiang, W., Zhang, X., Yuan, F., and Chen, Y.: Morphology-controlled ZnO spherical nanobelt-flower arrays and their sensing properties. Sensors Actuators, B Chem. 177, 562 (2013).CrossRefGoogle Scholar
Jiao, M., Chien, N.V., Van Duy, N., Hoa, N.D., Van Hieu, N., Hjort, K., and Nguyen, H.: On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO2 gas sensor. Mater. Lett. 169, 231 (2016).CrossRefGoogle Scholar
Guo, W.: ZnO nanosheets assembled different hierarchical structures and their gas sensing properties. J. Mater. Sci. Mater. Electron. 27(7), 1 (2016).Google Scholar
Navale, S.C., Gosavi, S.W., and Mulla, I.S.: Controlled synthesis of ZnO from nanospheres to micro-rods and its gas sensing studies. Talanta 75(5), 1315 (2008).Google Scholar
Park, S.: High-response and selective hydrogen sensing properties of porous ZnO nanotubes. Curr. Appl. Phys. 16(10), 1263 (2016).Google Scholar
Zayer, N.K., Greef, R., Rogers, K., Grellier, A.J.C., and Pannell, C.N.: In situ monitoring of sputtered zinc oxide films for piezoelectric transducers. Thin Solid Films 352(1), 179 (1999).Google Scholar
Martinson, A.B.F., Elam, J.W., Hupp, J.T., and Pellin, M.J.: ZnO nanotube based dye-sensitized solar cells. Nano Lett. 7(8), 2183 (2007).Google Scholar
Xiong, H.: ZnO nanoparticles applied to bioimaging and drug delivery. Adv. Mater. 25(37), 5329 (2013).CrossRefGoogle ScholarPubMed
Pauporté, T. and Lincot, D.: Electrodeposition of semiconductors for optoelectronic devices: Results on zinc oxide. Electrochim. Acta 45(20), 3345 (2000).CrossRefGoogle Scholar
Wei, A., Pan, L., and Huang, W.: Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng., B 176(18), 1409 (2011).Google Scholar
Öztürk, S., Kılınç, N., and Öztürk, Z.Z.: Fabrication of ZnO nanorods for NO2 sensor applications: Effect of dimensions and electrode position. J. Alloys Compd. 581, 196 (2013).Google Scholar
Dhingra, M., Singh, N.K., Shrivastava, S., Senthil Kumar, P., and Annapoorni, S.: Worm like zinc oxide nanostructures as efficient LPG sensors. Sens. Actuators, A 190, 168 (2013).CrossRefGoogle Scholar
Khoang, N.D., Hong, H.S., Van Duy, N., Hoa, N.D., Thinh, D.D., and Van Hieu, N.: On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sens. Actuators, B 181, 529 (2013).Google Scholar
Rao, B.B.: Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour. Mater. Chem. Phys. 64(1), 62 (2000).CrossRefGoogle Scholar
Gao, Q., Zheng, W-T., Wei, C-D., and Lin, H-M.: Methanol-sensing property improvement of mesostructured zinc oxide prepared by the nanocasting strategy. J. Nanomater. 2013, 263852 (2013).Google Scholar
Mani, G.K. and Rayappan, J.B.B.: Novel and facile synthesis of randomly interconnected ZnO nanoplatelets using spray pyrolysis and their room temperature sensing characteristics. Sens. Actuators, B 198, 125 (2014).Google Scholar
Bai, Z., Li, S., Xu, J., Zhou, Y., Gu, S., Tao, Y., Liu, L., Fang, D., and Xu, W.: Fabrication and gas-sensing properties of hierarchical ZnO replica using down as template. Appl. Phys. A 122(6), 622 (2016).Google Scholar
Hussain, S., Liu, T., Kashif, M., Cao, S., Zeng, W., Xu, S., Naseer, K., and Hashim, U.: A simple preparation of ZnO nanocones and exposure to formaldehyde. Mater. Lett. 128, 35 (2014).Google Scholar
Guo, W., Fu, M., Zhai, C., and Wang, Z.: Hydrothermal synthesis and gas-sensing properties of ultrathin hexagonal ZnO nanosheets. Ceram. Int. 40(1, Part B), 2295 (2014).Google Scholar
Hussain, S., Liu, T., Kashif, M., Miao, B., Lin, L., Zeng, W., Rashad, M., Peng, X., and Pan, F.: Preparation of ZnO nanodisks using hydrothermal method and sensing to reductive gases. J. Mater. Sci. Mater. Electron. 25(11), 4725 (2014).Google Scholar
Zhang, S-L., Lim, J-O., Huh, J-S., Noh, J-S., and Lee, W.: Two-step fabrication of ZnO nanosheets for high-performance {VOCs} gas sensor. Curr. Appl. Phys. 13(Suppl. 2), S156 (2013).Google Scholar
Wang, L., Dou, H., Li, F., Deng, J., Lou, Z., and Zhang, T.: Controllable and enhanced HCHO sensing performances of different-shelled ZnO hollow microspheres. Sens. Actuators, B 183, 467 (2013).Google Scholar
Zhang, D., Wu, X., Han, N., and Chen, Y.: Chemical vapor deposition preparation of nanostructured ZnO particles and their gas-sensing properties. J. Nanoparticle Res. 15(4), 1580 (2013).Google Scholar
Zhang, L., Zhao, J., Lu, H., Gong, L., Li, L., Zheng, J., Li, H., and Zhu, Z.: High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method. Sens. Actuators, B 160(1), 364 (2011).Google Scholar
Zhang, L., Zhao, J., Zheng, J., Li, L., and Zhu, Z.: Shuttle-like ZnO nano/microrods: Facile synthesis, optical characterization and high formaldehyde sensing properties. Appl. Surf. Sci. 258(2), 711 (2011).Google Scholar
Hu, P., Han, N., Zhang, X., Yao, M., Cao, Y., Zuo, A., Yang, G., and Yuan, F.: Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor. J. Mater. Chem. 21(37), 14277 (2011).Google Scholar
Li, B. and Wang, Y.: Hierarchically assembled porous ZnO microstructures and applications in a gas sensor. Superlattices Microstruct. 49(4), 433 (2011).Google Scholar
Chu, X., Chen, T., Zhang, W., Zheng, B., and Shui, H.: Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sens. Actuators, B 142(1), 49 (2009).Google Scholar
Chung, P-R., Tzeng, C-T., Ke, M-T., and Lee, C-Y.: Formaldehyde gas sensors: A review. Sensors 13(4), 4468 (2013).Google Scholar
Hong, H.P., Kim, J.H., Lee, C.J., and Min, N.K.: In-plane impedancemetric ammonia sensing of solution-deposited, highly semiconductor-enriched single-wall carbon nanotube submonolayer network gas sensors. Sens. Actuators, B 220, 27 (2015).Google Scholar
Marr, I., Neumann, K., Thelakkat, M., and Moos, R.: Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter. Appl. Phys. Lett. 105(13), 133301 (2014).Google Scholar
Alifragis, Y., Roussos, G., Pantazis, A.K., Konstantinidis, G., and Chaniotakis, N.: Free-standing gallium nitride membrane-based sensor for the impedimetric detection of alcohols. J. Appl. Phys. 119(7), 74502 (2016).Google Scholar
Dai, L., Meng, W., Meng, W., Zhou, H., Yang, G., Li, Y., and Wang, L.: An impedancemetric NH3 sensor based on La10Si5MgO26 electrolyte and nano-structured CoWO4 sensing electrode. J. Electrochem. Soc. 163(3), B1 (2016).Google Scholar
Liu, L., Li, X., Dutta, P.K., and Wang, J.: Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sens. Actuators, B 185, 1 (2013).Google Scholar
Wahab, R., Kim, Y-S., and Shin, H-S.: Fabrication, characterization and growth mechanism of heterostructured zinc oxide nanostructures via solution method. Curr. Appl. Phys. 11(3), 334 (2011).Google Scholar
Peng, L., Qin, P., Zeng, Q., Song, H., Lei, M., Mwangi, J.J.N., Wang, D., and Xie, T.: Improvement of formaldehyde sensitivity of ZnO nanorods by modifying with Ru(dcbpy)2(NCS)2 . Sens. Actuators, B 160(1), 39 (2011).Google Scholar
Rheaume, J.M. and Pisano, A.P.: A review of recent progress in sensing of gas concentration by impedance change. Ionics 17(2), 99 (2011).Google Scholar
Yang, Z., Liu, Q., Yu, H., Zou, B., Wang, Y., and Wang, T.H.: Substrate-free growth, characterization and growth mechanism of ZnO nanorod close-packed arrays. Nanotechnology 19(3), 35704 (2008).Google Scholar
Chen, Y.W., Qiao, Q., Liu, Y.C., and Yang, G.L.: Size-controlled synthesis and optical properties of small-sized ZnO nanorods. J. Phys. Chem. C 113(18), 7497 (2009).Google Scholar
Kannan, P.K., Saraswathi, R., and Rayappan, J.B.B.: CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film. Ceram. Int. 40(8), 13115 (2014).Google Scholar
Chen, H-W., Yang, H-W., He, H-M., and Lee, Y-M.: ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: Structural, photoluminescence and field emission characteristics. J. Phys. D. Appl. Phys. 49(2), 25306 (2016).Google Scholar
Alexander, L. and Klug, H.P.: Determination of crystallite size with the X-ray spectrometer. J. Appl. Phys. 21(2), 137 (1950).Google Scholar
Lee, Y-C., Hu, S-Y., Water, W., Tiong, K-K., Feng, Z-C., Chen, Y-T., Huang, J-C., Lee, J-W., Huang, C-C., and Shen, J-L.: Rapid thermal annealing effects on the structural and optical properties of ZnO films deposited on Si substrates. J. Lumin. 129(2), 148 (2009).Google Scholar
Varghese, O.K. and Grimes, C.A.: Metal oxide nanoarchitectures for environmental sensing. J. Nanosci. Nanotechnol. 3(4), 277 (2003).Google Scholar
Barik, S.K., Choudhary, R.N.P., and Mahapatra, P.K.: Impedance spectroscopy study of Na1/2Sm1/2TiO3 ceramic. Appl. Phys. A 88(1), 217 (2007).Google Scholar
Hou, J., Huang, H., Han, Z., and Pan, H.: The role of oxygen adsorption and gas sensing mechanism for cerium vanadate (CeVO4) nanorods. RSC Adv. 6(18), 14552 (2016).Google Scholar
Gurlo, A.: Interplay between O2 and SnO2: Oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. ChemPhysChem 7(10), 2041 (2006).Google Scholar
Deng, L., Ding, X., Zeng, D., Tian, S., Li, H., and Xie, C.: Visible-light activate mesoporous WO3 sensors with enhanced formaldehyde-sensing property at room temperature. Sens. Actuators, B 163(1), 260 (2012).Google Scholar
Rothschild, A. and Komem, Y.: On the relationship between the grain size and gas-sensitivity of chemo-resistive metal-oxide gas sensors with nanosized grains. J. Electroceramics 13, 697 (2004).CrossRefGoogle Scholar
Xu, C., Tamaki, J., Miura, N., and Yamazoe, N.: Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators, B 3(2), 147 (1991).Google Scholar
Supplementary material: File

Kannan and Saraswathi supplementary material

Kannan and Saraswathi supplementary material

Download Kannan and Saraswathi supplementary material(File)
File 152.1 KB