Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T04:26:51.193Z Has data issue: false hasContentIssue false

Alpha-recoil damage in zirconolite (CaZrTi2O7)

Published online by Cambridge University Press:  31 January 2011

G.R. Lumpkin
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131
R.C. Ewing
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131
B.C. Chakoumakos
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131
R.B. Greegor
Affiliation:
The Boeing Company, P. O. Box 3999 2T-05, Seattle, Washington 98124
F.W. Lytle
Affiliation:
The Boeing Company, P. O. Box 3999 2T-05, Seattle, Washington 98124
E.M. Foltyn
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
F.W. Clinard Jr.
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
L.A. Boatner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Oak Ridge, Tennessee 37831
M.M. Abraham
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Oak Ridge, Tennessee 37831
Get access

Abstract

Radiation effects in a natural, metamict zirconolite from Sri Lanka that has received an alpha-decay dose greater than 1026 alpha decays/m3 have been studied using x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), electron paramagnetic resonance spectroscopy (EPR), extended x-ray absorption fine structure spectroscopy (EXAFS), and x-ray absorption near edge structure spectroscopy (XANES). The same techniques were applied to the sample annealed between 1000°and 1100°C. The heat of recrystallization was measured by differential thermal analysis (DTA) with values of 40 to 50J/g. In contrast to previous work [A. E. Ringwood, Am. Scientist 70, 201 (1982); Mineralog. Mag. 49, 159 (1985)], these results demonstrate that there are fundamental differences at the atomic level between the annealed, crystalline, and the natural, fully damaged zirconolite. We suggest that the most likely structure for the fully damaged state is that of a random, three-dimensional network with no atomic periodicity extending beyond the first coordination sphere. Even within the first coordination sphere, there is a reduction in coordination number and an associated decrease in bond length for principal cations (Ca and Ti). Despite this structural modification and the great age of the specimen (∼550 million years), the natural zirconolite shows only minor signs of geochemical alteration. The metamict structure is readily annealed, initially to a disordered, flourite-type structure, and finally, at higher temperatures, to a highly twinned, monoclinic zirconolite structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., and Major, A., Nature 278, 219 (1979).CrossRefGoogle Scholar
2White, T. J., Segall, R. L., and Turner, P. S., Angew. Chem. 24, 357 (1985).CrossRefGoogle Scholar
3Kesson, S. E., Sinclair, W. J., and Ringwood, A. E., Nucl. Chem. Waste Manage. 4, 259 (1983).Google Scholar
4Ewing, R. C. and Haaker, R. F., Nucl. Chem. Waste Manage. 1, 51 (1980).CrossRefGoogle Scholar
5Ewing, R. C., Haaker, R. F., and Lutze, W., Scientific Basis for Nuclear Waste Management, edited by Lutze, W. (Elsevier, New York, 1982), Vol. 11, p. 389.Google Scholar
6Ewing, R.C., Haaker, R. F., Headley, T. J., and Hlava, P. F., Scientific Basis for Nuclear Waste Management, edited by Topp, S. V. (Elsevier, New York, 1982), Vol. 6, p. 249.Google Scholar
7Ewing, R. C. and Headley, T. J., J. Nucl. Mater. 119, 102 (1983).CrossRefGoogle Scholar
8Ewing, R.C., in the Geological Association of Canada and Mineralo- gical Association of Canada Annual Meeting Program with Absracts. A 21 (1983).Google Scholar
9Oversby, V. M. and Ringwood, A. E., Radioactive Waste Manage. 1, 289 (1981).Google Scholar
10Sinclair, W. and Ringwood, A. E., Geochem. J. 15, 229 (1981).CrossRefGoogle Scholar
11Sinclair, W. and Eggleton, R. A., Am. Mineralogist 67, 614 (1982).Google Scholar
12Chard, F. W. Jr., Hobbs, L. W., Land, C. C., Peterson, D. E., Rohr, D. L., and Roof, R. B., J. Nucl. Mater. 105, 248 (1982).Google Scholar
13Clinard, F.W. Jr., Land, C. C., Peterson, D. E., Rohr, D. L., and Roof, R. B., Scientific Basis for Nuclear Waste Management, edited by Topp, S. V. (Elsevier, New York, 1982), Vol. 6, p. 405.Google Scholar
14Clinard, F. W. Jr., Rohr, D. L., and Roof, R. B., Nucl. Instrum. Methods Phys. Res. B1, 581 (1984).Google Scholar
15Clinard, F.W. Jr., Peterson, D. E., Rohr, D. L., and Hobbs, L. W., J. Nucl. Mater. 126, 245 (1984).CrossRefGoogle Scholar
16Clinard, F. W. Jr., Livak, R. J., Hobbs, L. W., and Rohr, D. L., The Scientific Basis for Nuclear Waste Management, edited by Werme, L. (Materials Research Society, Pittsburgh, 1986), Vol. 9, p. 371.Google Scholar
17Ringwood, A. E., Am. Scientist 70, 201 (1982).Google Scholar
18Ringwood, A. E., Mineralog. Mag. 49, 159 (1985).CrossRefGoogle Scholar
19Mazzi, F. and Munno, R.. Am. Mineralogist 68, 262 (1983).Google Scholar
20Holland, H. D. and Gottfried, D., Acta Crystallogr. 8, 291 (1955).CrossRefGoogle Scholar
21Wald, J. W. and Offermann, P., Scientific Basis for Nuclear Waste Management, edited by Lutze, W. (Elsevier, New York, 1982), Vol. 5, p. 369.Google Scholar
22Chakoumakos, B. C. and Ewing, R. C., in the 98th Annual Meeting of the Geological Society of America, Abstracts with Programs, 542 (1985).Google Scholar
23White, T.J., Segall, R. L., Hutchison, J. L., and Barry, J. C., Proc. R. SOC. London Ser. A 392, 343 (1984).Google Scholar
24White, T. J., Am. Mineralogist 69, 1156 (1984).Google Scholar
25Foltyn, E. M., Clinard, F. W. Jr., Rankin, J., and Peterson, D. E., J. Nucl. Mater. 136, 97 (1985).CrossRefGoogle Scholar
26Weber, W.J., Wald, J. W., and Matzke, Am., Scientific Basis for Nuclear Waste Management, edited by Jantzen, C. M., Stone, J. A., and Ewing, R. C. (Materials Research Society, Pittsburgh, 1985), Vol. 8, p. 679.Google Scholar
27Weber, W.J., Wald, F. W., and Matzke, Hj., J. Nucl. Mater. 138, 196 (1986).CrossRefGoogle Scholar
28Lumpkin, G. R., Foltyn, E. M., and Ewing, R. C., J. Nucl. Mater. (to be published).Google Scholar
29Lumpkin, G.R., Chakoumakos, B. C., and Ewing, R. C., Am. Mineralogist 71, 579 (1986).Google Scholar
30Bursill, L.A., Mallinson, L. G., Elliott, S. R., and Thomas, J. M., J. Phys. Chem. 85, 3004 (1981).Google Scholar
31Bursill, L. A. and Thomas, J. M., J. Phys. Chem. 85, 3007 (1981).Google Scholar
32Blake, G.S. and Smith, G. F. H., Mineralog. Mag. 16, 309 (1913).Google Scholar
33Lytle, F. W., Greegor, R. B., Sandstrom, D. R., Marques, E. C., Wong, J., Spiro, C. L., Huffman, G. P., and Huggins, F. E., Nucl. Instrum. Methods Phys. Res. (to be published).Google Scholar
34Greegor, R. B., Lytle, F. W., Ewing, R. C., and Haaker, R. F., Nucl. Instrum. Methods Phys. Res. B1, 587 (1984).Google Scholar
35Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures (Wiley, New York, 1974), pp. 847850.Google Scholar
36Gatehouse, B.M., Grey, I. E., Hill, R. J., and Rossell, H. J., Acta Crystallogr. B37, 306 (1981).Google Scholar
37Weber, W.J., Radiat. Effects 83, 145 (1984).CrossRefGoogle Scholar
38Eyal, Y., Lumpkin, G. R., and Ewing, R. C., Scientific Basis for Nuclear Waste Management, edited by Werme, L. (Materials Research Society, Pittsburgh, 1986), Vol. 9, p. 379.Google Scholar