Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-9nx8b Total loading time: 0.231 Render date: 2023-01-28T18:56:13.284Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

X-ray reflectivity spectra of ultrathin films and nanometric multilayers: Experiment and simulation

Published online by Cambridge University Press:  31 January 2011

E. Bontempi
Affiliation:
Istituto Nazionale per la Fisica della Materia and Laboratorio di Strutturistica Chimica, Dipartimento di Ingegneria Meccanica, Universitàdi Brescia, Via Branze 38, 25123 Brescia, Italy
L. E. Depero*
Affiliation:
Istituto Nazionale per la Fisica della Materia and Laboratorio di Strutturistica Chimica, Dipartimento di Ingegneria Meccanica, Universitàdi Brescia, Via Branze 38, 25123 Brescia, Italy
L. Sangaletti
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Matematica e Fisica, Universita‘Cattolica del Sacro Cuore, Via dei Musei 41, 25123 Brescia, Italy
F. Giorgis
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
C. F. Pirri
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
*
a)Author correspondence to this author.depero@bsing.ing.unibs.it
Get access

Abstract

Amorphous silicon–nitrogen (a–Si1−xNx:H) alloys, thin films, and multilayers deposited by ultrahigh-vacuum plasma-enhanced chemical vapor deposition were studied and modeled by x-ray reflectivity (XRR) measurements. The analysis of XRR data obtained from the single-layer samples allowed us to calculate the density, thickness, and interface roughness of each layer. To check the deposition parameters, the deviation (tnomtexp)/(tnom) of the measured thickness texp from the nominal thickness tnom was evaluated. Based on these results, a simulation of a multilayer film, obtained by deposition alternating stoichiometric and substoichimetric layers was carried out. It is shown that the best fitting is obtained by introducing into the XRR calculation a thickness distribution with a standard deviation related to the deviation (tnomtexp)/(tnom) estimated for the single layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Awaji, N., Ohkubo, S., Nakanishi, T., Aoyama, T., Sugita, Y., Takasaki, K., and Komiya, S., Appl. Phys. Lett. 71, 1954 (1997).CrossRefGoogle Scholar
2Takahashi, I., Okita, S., Awaji, N., Sugita, Y., and Komiya, S., Physica B 245, 306 (1998).CrossRefGoogle Scholar
3Holy, V., Darhuber, A.A., Stangl, J., Bauer, G., Nützel, J., and Abstreiter, G., Semicond. Sci. Technol. 13, 590 (1998).CrossRefGoogle Scholar
4Plotz, W.M., Koppensteiner, E., Kibbel, H., Presting, H., Bauer, G., and Lischka, K., Semicond. Sci. Technol. 10, 1614 (1995).CrossRefGoogle Scholar
5Dura, J.A., Pellegrino, J.G., and Richter, C.A., Appl. Phys. Lett. 69, 1134 (1996).CrossRefGoogle Scholar
6Hirose, M. and Miyazaki, S., IEEE Trans. Electr. Dev. 36, 2873 (1989).CrossRefGoogle Scholar
7Li, B., Fujimoto, T., Fukumoto, N., Honda, K., and Kojima, I., Thin Solid Films 334, 140 (1998).CrossRefGoogle Scholar
8Makino, T. and Maeda, M., Jpn. J. Appl. Phys. 25, 1300 (1986).CrossRefGoogle Scholar
9San-Fabian, E., Louis, E., Martin-Moreno, L., and Verges, J.A., Phys. Rev. B 39, 9683 (1989).CrossRefGoogle Scholar
10Giorgis, F., Pirri, C.F., and Tresso, E., Thin Solid Films 307, 298 (1997).CrossRefGoogle Scholar
11Robertson, J., Philos. Mag. B 63, 47 (1991).CrossRefGoogle Scholar
12Giorgis, F., Pirri, C.F., Vinegoni, C., and Pavesi, L., Phys. Rev. B 60, 11572 (1999).CrossRefGoogle Scholar
13Bontempi, E., Depero, L.E., Sangaletti, L., Giorgis, F., and Pirri, C.F., Mater. Chem. Phys. 66, 172 (2000).CrossRefGoogle Scholar
14Rizzoli, R., Summonte, C., Rava, P., Barucca, G., Desalvo, A., and Giorgis, F., J. Non-Cryst. Solids 266, 1062 (2000).CrossRefGoogle Scholar
15Tolan, M. and Press, W., Z. Kristall. 213, 319 (1998).Google Scholar
16Holy, V., Pietsch, U., and Baumbach, T., High Resolution X-ray Scat-tering for Thin Films and Multilayers (Springer, Berlin, 1999).Google Scholar
17Parrat, L.G., Phys. Rev. 95, 359 (1954).CrossRefGoogle Scholar
18Croce, P. and Névot, L., Rev. Phys. Appl. 11, 113 (1976).CrossRefGoogle Scholar
19Sinha, S.K., Sirota, E.B., Garoff, S., and Stanley, H.B., Phys. Rev. B 38, 2297 (1988).CrossRefGoogle Scholar
20Bontempi, E., Depero, L.E., and Sangaletti, L., Philos. Mag. B 80, 623 (2000).CrossRefGoogle Scholar
21Barreca, D., Tondello, E., Bontempi, E., and Depero, L.E., J. Mater. Res. (submitted).Google Scholar
22Kiessig, H., Ann. Phys. (Leipzig) 10, 769 (1931).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

X-ray reflectivity spectra of ultrathin films and nanometric multilayers: Experiment and simulation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

X-ray reflectivity spectra of ultrathin films and nanometric multilayers: Experiment and simulation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

X-ray reflectivity spectra of ultrathin films and nanometric multilayers: Experiment and simulation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *