Hostname: page-component-7d8f8d645b-r82c8 Total loading time: 0 Render date: 2023-05-29T05:11:00.976Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

A transmission electron microscopy study on the decomposition of synthetic hillebrandite (Ca2SiO4 · H2O)

Published online by Cambridge University Press:  03 March 2011

Youn Joong Kim*
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Waltraud M. Kriven
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
a)Current address: Korea Basic Science Institute, Yusung P.O. Box 41, Taejeon 305-600, Republic of Korea
Get access


The decomposition mechanism of hillebrandite (Ca2SiO4 · H2O) to larnite (β-Ca2SiO4) was studied by conventional and in situ hot-stage TEM methods. The hillebrandite structure is suggested to be a composition of parawollastonite (CaSiO3) and portlandite [Ca(OH)2] adjoining on {001} planes. The larnite fibers showed occasional bending and kinking as well as internal defects such as dislocations and domains. No transformation-related microstructures such as twinning were observed. The preferred orientations in the larnite fibers were not distinct. The decomposition mechanism of hillebrandite in air and in a vacuum may be different. In air, the CaO from the decomposed portlandite layer directly participates in the process of SiO4 chain breaking to form larnite. In the TEM this CaO is removed and apparently reprecipitated, so that hillebrandite converts directly to parawollastonite, A possible lattice correspondence between hillebrandite (C2SH) and larnite (β-C2S), based on crystallographic considerations, is proposed to be bC2SHbβ-c2s, αC2SH ¶ ≍[102]β-C2S, and CC2SH ¶ ≍ [401]β-C2S.

Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1Ishida, H., Mabuchi, K., Sasah, K., and Mitsuda, T., J. Am. Ceram. Soc. 75, 2427 (1992).CrossRefGoogle Scholar
2Kim, Y.J., Kriven, W.M., and Mitsuda, T., J. Mater. Res. 8, 2948 (1993).CrossRefGoogle Scholar
3Torpov, N. A., Nikogosyan, Kh. S., and Boikova, A. I., Zh. Neorg. Khim. 4, 1159 (1959).Google Scholar
4Chan, C.J., Kriven, W.M., and Young, J.F., J. Am. Ceram. SOC. 75, 1621 (1992).CrossRefGoogle Scholar
5Kim, Y. J., Nettleship, I., and Kriven, W.M., J. Am. Ceram. SOC. 75, 2407 (1992).CrossRefGoogle Scholar
6Electron Microscopy in Mineralogy, edited by Wenk, H-R., Müller, W. F., Liddell, N. A., and Phakey, P. P. (Springer, Berlin, Heidelberg, New York, 1976), p. 324.CrossRefGoogle Scholar
7Midgley, C. M., Acta Crystallogr. 5, 307 (1952).CrossRefGoogle Scholar
8Jost, K. H.. Ziemer, B., and Seydel, R., Acta Crystallogr. B33, 1696 (1977).CrossRefGoogle Scholar
9Trojer, F. J., Z. Kristallogr. 127, 291 (1968).CrossRefGoogle Scholar
10Busing, W.R. and Levy, H.A., J. Chem. Phys. 26, 563 (1957).CrossRefGoogle Scholar
11Heller, L., Mineral Mag. 30, 150 (1953).Google Scholar
12International Tables,for Crystallography, edited by Hahn, T. (The International Union of Crystallography, 1983), Vol. A.Google Scholar
13Chatterji, S. and Jeffery, J. W., Min. Mag. 35, 867 (1966).Google Scholar
14Brett, N.H., Min. Mag. 37, 244 (1969).CrossRefGoogle Scholar
15Beruto, D., Barco, L., Searcy, A. W., and Spinolo, G., J. Am. Ceram. Soc. 63, 439 (1980).CrossRefGoogle Scholar
16Chaix-Pluchery, O., Bouillot, J., Ciosmak, D., Niepce, J.C., and Freund, F., J. Solid State Chem. 50, 247 (1983).CrossRefGoogle Scholar
17Chaix-Pluchery, O., Pannetier, J., Bouillot, J., and Niepce, J.C., J. Solid State Chem. 67, 225 (1987).CrossRefGoogle Scholar
18Beruto, D., Kim, M. G., and Searcy, A. W., High Temp.–High Press. 20, 25 (1988).Google Scholar
19Goodman, J. F., Proc. Roy. SOC. A247, 346 (1958).CrossRefGoogle Scholar
20Ball, M. C. and Taylor, H. F. W., Min. Mag. 32, 754 (1961).Google Scholar
21Gordon, R.S. and Kingery, W.D., J. Am. Ceram. Soc. 49, 654 (1966).CrossRefGoogle Scholar
22Kim, M. G., Dahmen, U., and Searcy, A. W., J. Am. Ceram. Soc. 70, 146 (1987).CrossRefGoogle Scholar
23Roy, D. M., Am. Min. 43, 1009 (1958).Google Scholar
24Kriven, W.M., J. Am. Ceram. Soc. 71, 1021 (1988).CrossRefGoogle Scholar