Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-bv7lh Total loading time: 0.322 Render date: 2021-06-13T02:43:13.407Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Thermochemistry of combustion reaction in Al–Ti–C system during mechanical alloying

Published online by Cambridge University Press:  31 January 2011

L. L. Ye
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
Z. G. Liu
Affiliation:
Department of Production Systems Engineering, Toyohashi University of Technology, Tempaku-Cho, Toyohashi 441, Japan
S. D. Li
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
M. X. Quan
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
Z. Q. Hu
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
Get access

Abstract

The combustion reaction while mechanical alloying (MA) the Al–Ti–C system has been detected by in situ thermal analysis and the results of x-ray diffraction (XRD). Based on the information provided by in situ thermal analysis, the reaction temperature is estimated to be 1677 K, which is in good agreement with the value of the adiabatic temperature of 1700 K. It is considered that the formation reaction of Ti–C, which ignited by the heavy collisions of milling balls, induced the following reaction between Ti and Al at high temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Holt, J. B. and Munir, Z. A., J. Mater. Sci. 21, 215 (1986).CrossRefGoogle Scholar
2.Yamada, O., Miyamoto, Y., and Koizumi, M., J. Am. Ceram. Soc. 70, C206 (1987).CrossRefGoogle Scholar
3.Dunmead, S. D., Readey, D. W., Semler, C. E., and Holt, J. B., J. Am. Ceram. Soc. 72, 2318 (1989).CrossRefGoogle Scholar
4.Choi, Y. and Rhee, S-W., J. Mater. Res. 8, 3202 (1993).CrossRefGoogle Scholar
5.Choi, Y. and Rhee, S-W., J. Mater. Sci. 28, 6669 (1993).CrossRefGoogle Scholar
6.Mei, B. C., Yuan, R. Z., and Duan, X. L., J. Mater. Res. 8, 2830 (1993).CrossRefGoogle Scholar
7.Dunmead, S. D., Munir, Z. A., Holt, J. B., and Kingman, D. D., J. Mater. Sci. 26, 2410 (1990).CrossRefGoogle Scholar
8.Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
9.Klassen, T., Oehring, M., and Bormann, R., J. Mater. Res. 9, 47 (1994).CrossRefGoogle Scholar
10.Ecket, J., Holzer, J. C., and Johnoson, W. L., Scripta. Metall. 27, 1105 (1992).CrossRefGoogle Scholar
11.Atzmon, M., Phys. Rev. Lett. 64, 487 (1990).CrossRefGoogle Scholar
12.Ma, E., Pagan, J., Cranford, G., and Atzmon, M., J. Mater. Res. 8, 1836 (1993).CrossRefGoogle Scholar
13.Liu, Z. G., Guo, J. T., Ye, L. L., Li, G. S., and Hu, Z. Q., Appl. Phys. Lett. 65, 2666 (1994).CrossRefGoogle Scholar
14.Ye, L. L., Liu, Z. G., Quan, M. X., and Hu, Z. Q., J. Appl. Phys. 80, 1910 (1996).CrossRefGoogle Scholar
15.Storm, E. K., The Refractory Carbides (Academic Press, New York and London, 1967), p. 8.Google Scholar
16.Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).CrossRefGoogle Scholar
17.Eckert, J., Schultz, L., Hellstern, E., and Urban, K., J. Appl. Phys. 64, 3224 (1988).CrossRefGoogle Scholar
18.Smithells, C. J., Metal Reference Book, 5th ed. (Butterworths, London, Boston, 1976), pp. 194, 223.Google Scholar
19.Barin, I., Thermochemical Data of Pure Substances (VCH, Berlin, 1993), p. 71.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thermochemistry of combustion reaction in Al–Ti–C system during mechanical alloying
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Thermochemistry of combustion reaction in Al–Ti–C system during mechanical alloying
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Thermochemistry of combustion reaction in Al–Ti–C system during mechanical alloying
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *