Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-kv5sj Total loading time: 0.18 Render date: 2021-09-25T13:40:07.807Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Thermochemical stability of BaFe12O19 and BaFe2O4 and phase relations in the Ba-Fe-O ternary system

Published online by Cambridge University Press:  03 March 2011

Jinshan Li
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Turgut M. Gür
Affiliation:
Center for Materials Research, Stanford University, Stanford, California 94305
Robert Sinclair
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Stephen S. Rosenblum
Affiliation:
Applied Electronics Center, Kobe Steel USA, Palo Alto, California 94304
Hidetaka Hayashi
Affiliation:
Applied Electronics Center, Kobe Steel USA, Palo Alto, California 94304
Get access

Abstract

The stability of BaFe12O19 and BaFe2O4 was studied by the oxygen coulometric titration technique between 700 °C and 1000 °C using a solid-state electrochemical cell. This temperature range is technologically important for the deposition of BaFe2O19 magnetic thin films. The thermodynamic information obtained from the titration measurements was corroborated with structural identification of phases prepared under electrochemically controlled conditions. Accordingly, a section of the Ba–Fe–O ternary phase diagram around the BaFe12O19 composition was constructed in this temperature range. The standard Gibbs free energy change for the decomposition of BaFe12O19 into BaFe2O4, Fe3O4, and O2 is given by the expression Δ[J/mol] = 7.23 × 105 −480T. In the oxygen pressure-temperature domain, the thermodynamic stability limits of BaFe12O19 and BaFe2O4 are given by the expressions In[Po2(atm)] = 69.37 −1.04 × 105 T−1 and In[Po2(atm)] = 27.68 −7.12 × 104 T−1, respectively. The stability limits determined here help define the process conditions for the successful synthesis of these phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Simmons, R. G., IEEE Trans. Magn. 25, 4051 (1989).CrossRefGoogle Scholar
2Smit, J. and Wijn, H. P. J., Ferrites (John Wiley, New York, 1959).Google Scholar
3Adelsköld, V., Arkiv. Kemi. Mineral. Geol. 12A, 1 (1938).Google Scholar
4Goto, Y. and Takada, T., J. Am. Ceram. Soc. 43, 150 (1960).CrossRefGoogle Scholar
5Van Hook, H. J., J. Am. Ceram. Soc. 47, 579 (1964).CrossRefGoogle Scholar
6Negas, T. and Roth, R. S., J. Res. Natl. Bur. Stand. Sec. A 73, 426 (1969).Google Scholar
7Montorsi, M. and Appendino, P., Atti. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. 113, 479 (1979).Google Scholar
8Shirk, B. T., Mater. Res. Bull. V, 771 (1970).CrossRefGoogle Scholar
9Sloccari, G., J. Am. Ceram. Soc. 56, 489 (1973).CrossRefGoogle Scholar
10Boivin, J-C., Thomas, D., Pouillard, G., and Perrot, P., J. Solid State Chem. 29, 101 (1979).CrossRefGoogle Scholar
11Pouillard, G., Shamsul Alam, M., Trinel-Dufour, M-C., and Perrot, P., J. Chem. Res. (M), 1720 (1981), and J. Chem. Res., Synop. (5), 136 (1981).Google Scholar
12Deo, B., Kachhawaka, J. S., and Tare, V. B., Metall. Trans. B 7B, 405 (1976).CrossRefGoogle Scholar
13Morisako, A., Matsumoto, M., and Naoe, M., IEEE Trans. Magn. 6, 3024 (1988).CrossRefGoogle Scholar
14Naoe, M., Hasunuma, S., Hoshi, Y., and Yamanaka, S., IEEE Trans. Magn. MAG–17, 3184 (1981).CrossRefGoogle Scholar
15Matsuoka, M. and Naoe, M., J. Appl. Phys. 57, 4040 (1985).CrossRefGoogle Scholar
16Morisako, A., Matsumoto, M., and Naoe, M., IEEE Trans. MAG–23, 56 (1987).Google Scholar
17Nakata, J., Iwata, S., and Uchiyama, S., IEEE Trans. J. Magn. Jpn. 3, 816 (1988).CrossRefGoogle Scholar
18Dotsch, H., Mateika, D., Roschmann, P., and Tolksdorf, W., Mater. Res. Bull. XVIII, 1209 (1983).CrossRefGoogle Scholar
19Rinaldi, S. and Licci, F., IEEE Trans. Magn. MAG–20, 1267 (1984).CrossRefGoogle Scholar
20Zaquine, I., Benazizi, H., and Mage, J. C., J. Appl. Phys. 64, 5822 (1988).CrossRefGoogle Scholar
21Glass, H. L., Proc. IEEE 76, 151 (1988).CrossRefGoogle Scholar
22Webb, D. C., IEEE Trans. Magn. 24, 2799 (1988).CrossRefGoogle Scholar
23Adam, J. D., Krishnaswamy, S. V., Talisa, S. H., and Yoo, K. C., J. Magn. Mater. 83, 419 (1990).CrossRefGoogle Scholar
24Wagner, C., J. Chem. Phys. 21, 1819 (1953).CrossRefGoogle Scholar
25Piekarczyk, W., Weppner, W., and Rabenau, A., Z. Naturforsch. 34A, 430 (1979).Google Scholar
26Weppner, W., Li-chuan, C., and Piekarczyk, W., Z. Naturforsch. 35A, 381 (1980).Google Scholar
27Ahn, B. T., Gür, T. M., Huggins, R. A., Beyers, R., Engler, E. M., Grant, P. M., Parkin, S. S. P., Lim, G., Ramirez, M. L., Roche, K. P., Vazquez, J. E., Lee, V. Y., and Jacowitz, R. D., Physica C 153–155, 590 (1988).CrossRefGoogle Scholar
28Ahn, B. T., Lee, V. Y., Beyers, R., Gür, T. M., and Huggins, R. A., Physica C 167, 529 (1990).CrossRefGoogle Scholar
29Weppner, W., Solid State Ionics 3/4, 1 (1981).CrossRefGoogle Scholar
30Belzner, A., Gür, T. M., and Huggins, R. A., Solid State Ionics 57, 327 (1992).CrossRefGoogle Scholar
31Porat, O. and Riess, I., Appl. Phys. Lett. 61, 366 (1992).CrossRefGoogle Scholar
32Gür, T. M., Raistrick, I. D., and Huggins, R. A., Mater. Sci. Eng. 46, 53 (1980).CrossRefGoogle Scholar
33Patterson, J. W., Bogren, E. C., and Rapp, R. A., J. Electrochem. Soc. 114, 752 (1967).CrossRefGoogle Scholar
34Barin, I. and Knacke, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973).Google Scholar
35Weppner, W., Li-chuan, C., and Rabenau, A., J. Solid State Chem. 31, 257 (1980).CrossRefGoogle Scholar
36JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).Google Scholar
37Landiya, N. A., Pavlenishvili, T. A., and Chachanidze, G. D., Russ. J. Phys. Chem. 43, 555 (1969).Google Scholar
38Benz, R. and Wagner, C., J. Phys. Chem. 65, 1308 (1961).CrossRefGoogle Scholar
39Ramanarayanan, T. A., Narula, M. L., and Worrell, W. L., J. Electrochem. Soc. 126, 1360 (1979).CrossRefGoogle Scholar
40Lucchini, E., Meriani, S., and Minichelli, D., Acta Crystallogr. B 29, 1217 (1973).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thermochemical stability of BaFe12O19 and BaFe2O4 and phase relations in the Ba-Fe-O ternary system
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Thermochemical stability of BaFe12O19 and BaFe2O4 and phase relations in the Ba-Fe-O ternary system
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Thermochemical stability of BaFe12O19 and BaFe2O4 and phase relations in the Ba-Fe-O ternary system
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *