Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T18:09:35.890Z Has data issue: false hasContentIssue false

Superplastic constitutive equation and rate-controlling process in aluminum matrix composites with discontinuous fiber and particle reinforcements

Published online by Cambridge University Press:  31 January 2011

Mamoru Mabuchi
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462, Japan
Kenji Higashi
Affiliation:
College of Engineering, Department of Mechanical Systems Engineering, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 593, Japan
Get access

Abstract

Superplastic behavior of aluminum matrix composites with discontinuous reinforcements has been investigated in a temperature range below the melting temperature measured by differential scanning calorimetry. The experimental results of the mechanical properties revealed that the rate-controlling process of superplastic flow was associated with dislocation movement controlled by lattice self-diffusion. The strengthening due to the presence of reinforcements was retained. It is suggested that the strongest strengthening process of the dislocation-pileup mechanism and the diffusional relaxation-limitation or dislocation bypass mechanism affects the rate-controlling process.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nieh, T. G., Henshall, C. A., and Wadsworth, J., Scripta Metall. 18, 1405 (1984).CrossRefGoogle Scholar
2.Mahoney, M. W. and Ghosh, A. K., Metall. Trans. A 18A, 653 (1987).CrossRefGoogle Scholar
3.Pilling, J., Scripta Metall. 23, 1375 (1989).CrossRefGoogle Scholar
4.Mahoney, M. W., Ghosh, A. K., and Bampton, C. C., Proc. 6th Int. Conf. on Composite Materials, edited by Matthew, F. L., Buskell, N. C. R., Hodgkinson, J. M., and Monton, J. (Elsevier Applied Science, London, 1986), Vol. 2, p. 372.Google Scholar
5.Mabuchi, M. and Higashi, K., Mater. Sci. Eng. A179/A180, 625 (1994).CrossRefGoogle Scholar
6.Mabuchi, M. and Higashi, K., Mater. Trans. JIM 35, 399 (1994).CrossRefGoogle Scholar
7.Mabuchi, M. and Higashi, K., Mater. Trans. JIM 36, 420 (1995).CrossRefGoogle Scholar
8.Mabuchi, M. and Higashi, K., in Key Eng. Mater., edited by Newaz, G. M., Neber-Aeschbacher, H., and Wöhlbier, F. H. (Trans Tech Publications, Zürich, Switzerland, 1995), Vol. 104–107, p. 225.Google Scholar
9.Mishra, R. S. and Mukherjee, A. K., Scripta Metall. Mater. 25, 271 (1991).CrossRefGoogle Scholar
10.Mabuchi, M. and Higashi, K.,Scripta Mater. 34, 1897 (1996).CrossRefGoogle Scholar
11.Higashi, K., Mater. Sci. Forum 170–172, 131 (1994).CrossRefGoogle Scholar
12.Mabuchi, M., Imai, T., Kubo, K., Higashi, K., Okada, Y., and Tanimura, S., Mater. Lett. 11, 339 (1991).CrossRefGoogle Scholar
13.Mohamed, F. A. and Langdon, T. G., Acta Metall. 23, 117 (1975).CrossRefGoogle Scholar
14.Mohamed, F. A. and Langdon, T. G., Philos. Mag. 32, 697 (1975).CrossRefGoogle Scholar
15.Gifkins, R. C., Metall. Trans. A 7A, 1225 (1976).CrossRefGoogle Scholar
16.Arieli, A., Yu, A. K. S., and Mukherjee, A. K.,Metall. Trans. A 11A, 181 (1980).CrossRefGoogle Scholar
17.Hamilton, C. H., Bampton, C. C., and Paton, N. E., in Superplastic Forming of Structural Alloys, edited by Paton, N. E. and Hamilton, C. H. (The Metallurgical Society of AIME, Warrendale, PA, 1982), p. 173.Google Scholar
18.Mohamed, F. A., J. Mater. Sci. 18, 583 (1983).CrossRefGoogle Scholar
19.Chaudhury, P. K. and Mohamed, F. A., Acta Metall. 36, 1099 (1988).CrossRefGoogle Scholar
20.Mishra, R. S., Bieler, T. R., and Mukherjee, A. K., Acta Metall. Mater. 43, 877 (1995).CrossRefGoogle Scholar
21.Mishra, R. S. and Mukherjee, A. K., in Superplasticity and Superplastic Forming, edited by Ghosh, A. K. and Bieler, T. R. (TMS, Warrendale, PA, 1995), p. 171.Google Scholar
22.Matsuki, K., Morita, H., Yamada, M., and Murakami, Y., Metal Sci. 11, 156 (1977).CrossRefGoogle Scholar
23.Lin, Z-R., Chokshi, A. H., and Langdon, T. G., J. Mater. Sci. 23, 2712 (1988).CrossRefGoogle Scholar
24.Langdon, T. G., Mater. Sci. Eng. A174, 225 (1994).CrossRefGoogle Scholar
25.Ashby, M. F. and Verrall, R. A., Acta Metall. 21, 149 (1973).CrossRefGoogle Scholar
26.Ball, A. and Hutchison, M. M., Met. Sci. J. 3, 1 (1969).CrossRefGoogle Scholar
27.Mukherjee, A. K., Mater. Sci. Eng. 8, 83 (1971).CrossRefGoogle Scholar
28.Gifkins, R. C., Metall. Trans. A 7A, 1225 (1976).CrossRefGoogle Scholar
29.Burton, B., Philos. Mag. A 48, L9 (1983).CrossRefGoogle Scholar
30.Sherby, O. D. and Wadsworth, J., Prog. Mater. Sci. 33, 169 (1989).CrossRefGoogle Scholar
31.Hayden, H. W., Floreen, S., and Goodell, P. D., Metall. Trans. 3, 833 (1972).CrossRefGoogle Scholar
32.Suery, M. and Baudelet, B., Philos. Mag. A 41, 41 (1980).Google Scholar
33.Srolovitz, D. J., Luton, M. J., Petkovic-Luton, R., Barnett, D. M., and Nix, W. D., Acta Metall. 32, 1079 (1984).CrossRefGoogle Scholar
34.Arzt, E. and Rösler, J., Acta Metall. 36, 1053 (1988).CrossRefGoogle Scholar
35.Mabuchi, M. and Higashi, K., unpublished research.Google Scholar
36.Doncel, G. G. and Sherby, O. D., Acta Metall. Mater. 41, 2797 (1993).CrossRefGoogle Scholar
37.Dragone, T. L. and Nix, W. D., Acta Metall. Mater. 38, 1941 (1990).CrossRefGoogle Scholar
38.Bao, G., Hutchinson, J. W., and McMeeking, R. M., Acta Metall. Mater. 39, 1871 (1991).CrossRefGoogle Scholar
39.Rösler, J., Bao, G., and Evans, A. G., Acta Metall. Mater. 39, 2733 (1991).CrossRefGoogle Scholar
40.Pandey, A. B., Mishra, R. S., and Mahajan, Y. R., Acta Metall. Mater. 40, 2045 (1992).CrossRefGoogle Scholar
41.Arzt, E., Ashby, M. F., and Verrall, R. A., Acta Metall. 31, 1977 (1983).CrossRefGoogle Scholar
42.Le Roy, G., Embury, J. D., Edward, G., and Ashby, M. F., Acta Metall. 29, 1509 (1981).CrossRefGoogle Scholar