Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-5d2lc Total loading time: 0.244 Render date: 2022-01-21T03:15:32.548Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A study of temperature and pressure-induced structural and electronic changes in SbCl5 intercalated graphite: Part III. Analysis of the T and p dependence of the c-axis resistivity

Published online by Cambridge University Press:  03 March 2011

B. Sundqvist
Affiliation:
Department of Experimental Physics, Urnea University, S-90187 Urnea, Sweden
O.E. Andersson
Affiliation:
Department of Experimental Physics, Urnea University, S-90187 Urnea, Sweden
E. McRae
Affiliation:
Université de Nancy I, Laboratoire de Chimie du Solide Miéral, U.R.A. C.N.R.S. 158, Service de Chimie Minérate Appliquée, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cédex, France
M. Lelaurain
Affiliation:
Université de Nancy I, Laboratoire de Chimie du Solide Miéral, U.R.A. C.N.R.S. 158, Service de Chimie Minérate Appliquée, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cédex, France
J.F. Maréché
Affiliation:
Université de Nancy I, Laboratoire de Chimie du Solide Miéral, U.R.A. C.N.R.S. 158, Service de Chimie Minérate Appliquée, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cédex, France
Get access

Abstract

We present experimental data for the c-axis electrical resistivity of SbCl5 intercalated graphite between 20 and 300 K. The data are analyzed together with our previous results for these and other samples [O. E. Andersson et al., J. Mater. Res. 7, 2989 (1992)]. Before the analysis, we correct the experimental data to constant volume, as assumed by theorists. We show that the correction factor is much larger for these materials than for normal metals. Although the original data showed significant nonlinearities with T, the corrected data are linear in T to within the experimental accuracy for low-stage compounds below the intercalate crystallization temperature. We compare our results with several models and conclude that both the temperature dependence, the pressure dependence, and the relative changes in the in-plane and c-axis resistivities associated with intercalate crystallization can be best described by a band conduction model.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Lelaurain, M., Marêché, J.F., McRae, E., Andersson, O. E., and Sundqvist, B., J. Mater. Res. 7, 2978 (1992).CrossRefGoogle Scholar
2Andersson, O. E., Sundqvist, B., McRae, E., Marêché, J.F., and Lelaurain, M., J. Mater. Res. 7, 2989 (1992).CrossRefGoogle Scholar
3McRae, E., Marêché, J.F., Lelaurain, M., Andersson, O. E., and Sundqvist, B., Mol. Cryst. Liq. Cryst. 245, 61 (1994).CrossRefGoogle Scholar
4Ono, S., J. Phys. Soc. Jpn. 40, 498 (1976).CrossRefGoogle Scholar
5Spain, I. L., in Chemistry and Physics of Carbon, edited by Walker, P. L. and Thrower, P. A. (Marcel Dekker, New York, 1981), Vol. 16, p. 119.Google Scholar
6Morgan, G. J. and Uher, C., Philos. Mag. 44, 427 (1981).CrossRefGoogle Scholar
7Uher, C., Hockey, R. L., and Ben-Jacob, E., Phys. Rev. B 35, 4483 (1987).CrossRefGoogle Scholar
8Matsubara, K., Sugihara, K., and Tsuzuku, T., Phys. Rev. B 41, 969 (1990); correction, Phys. Rev. B 46, 1948 (1992).CrossRefGoogle Scholar
9Markiewicz, R. S., Solid State Commun. 57, 237 (1986).CrossRefGoogle Scholar
10Zaleski, H. and Datars, W. R., Phys. Rev. B 35, 7690 (1987).CrossRefGoogle Scholar
11Powers, R., Ibrahim, A. K., Zimmerman, G. O., and Tahar, M., Phys. Rev. B 38, 680 (1988).CrossRefGoogle Scholar
12Sugihara, K., Phys. Rev. B 29, 5872 (1984).CrossRefGoogle Scholar
13Sugihara, K., Phys. Rev. B 37, 4752 (1988).CrossRefGoogle Scholar
14Sugihara, K., J. Phys. Soc. Jpn. 62, 624 (1993).CrossRefGoogle Scholar
15Shimamura, S., Synth. Met. 12, 365 (1985).CrossRefGoogle Scholar
16Mott, N. F. and Jones, H., The Theory of the Properties of Metals and Alloys (Dover, New York, 1958).Google Scholar
17Ziman, J. M., Electrons and Phonons (Clarendon Press, Oxford, 1960), p. 418; Matula, R.A. and Klemens, P.G., High Temp.–High Pressures 10, 105 (1978).Google Scholar
18Sundqvist, B., Mod. Phys. Lett. B 7, 491 (1993).CrossRefGoogle Scholar
19Sundqvist, B. and Andersson, B. M., Solid State Commun. 76, 1019 (1990); Sundqvist, B. and Nilsson, E.M.C., Phys. Rev. B (1995, in press).CrossRefGoogle Scholar
20Salamanca-Riba, L. and Dresselhaus, M. S., Carbon 24, 261 (1986).CrossRefGoogle Scholar
21Alzyab, B., Perry, C. H., Zahapoulos, C., Pringle, O. A., and Nicklow, R. M., Phys. Rev. B 38, 1544 (1988).CrossRefGoogle Scholar
22Steward, E. G. and Cook, B. P., Nature 185, 78 (1960); Steward, E.G., Cook, B. P., and Kellett, E. A., Nature 187, 1015 (1960).CrossRefGoogle Scholar
23Hanfland, M., Beister, H., and Syassen, K., Phys. Rev. B 39, 12598 (1989); Zhao, Y.X. and Spain, I.L., Phys. Rev. 40, 993 (1989).CrossRefGoogle Scholar
24Gschneider, K. A. Jr., Solid State Phys. 16, 275 (1964).CrossRefGoogle Scholar
25Clarke, R., Elzinga, M., Gray, J. N., Homma, H., Morelli, D. T., Winokur, M. J., and Uher, C., Phys. Rev. B 26, 5250 (1982).CrossRefGoogle Scholar
26Mott, N. F., Proc. Roy. Soc. (London) A 156, 368 (1936).CrossRefGoogle Scholar
27Marchand, D., Fretigny, C., Lagues, M., Legrand, A. P., McRae, E., Mareche, J. F., and Lelaurain, M., Carbon 22, 497 (1984).CrossRefGoogle Scholar
28McKinnon, W. R., Hurd, C. M., and Shiozaki, I., J. Phys. C 14, L877 (1981); Shiozaki, I., Hurd, C. M., McAlister, S. P., McKinnon, W. R., and Strobel, P., J. Phys. C 14, 4641 (1981).CrossRefGoogle Scholar
29Enoki, T., Sakamoto, N., Nakazawa, K., Suzuki, K., Sugihara, K., and Kobayashi, K., Phys. Rev. B 47, 10662 (1993).CrossRefGoogle Scholar
30Bridgman, P. W., Proc. Am. Acad. Arts Sci. 84, 31 (1957); Jacobsson, P. and Sundqvist, B., J. Phys. Chem. Solids 49, 441 (1988).Google Scholar
31Okuyama, N., Yasunaga, H., and Minomura, S., Jpn. J. Appl. Phys. 10, 1645 (1971).CrossRefGoogle Scholar
32Andersson, G. and Sundqvist, B., Solid State Commun. 65, 735 (1988).CrossRefGoogle Scholar
33Batallan, F., Bok, J., Rosenman, I., and Melin, J., Phys. Rev. Lett. 41, 330 (1978).CrossRefGoogle Scholar
34Brandt, N. B., Kuvshinnikov, S. V., Ionov, S. G., and Mukhanov, V. A., Sov. J. Low Temp. Phys. 10, 379 (1984).Google Scholar
35Yosida, Y. and Tanuma, S., J. Phys. Soc. Jpn. 54, 650 (1985).CrossRefGoogle Scholar
36Yosida, Y., Tanuma, S., and Lye, Y., J. Phys. Soc. Jpn. 54, 2635 (1985).CrossRefGoogle Scholar
37Yosida, Y. and Tanuma, S., Carbon 23, 381 (1985).CrossRefGoogle Scholar
38Takahashi, O., Lye, Y., and Tanuma, S., Solid State Commun. 37, 863 (1981).CrossRefGoogle Scholar
39Zaleski, H., Ummat, P. K., and Datars, W. R., Phys. Rev. B 35, 2958 (1987).CrossRefGoogle Scholar
40Wang, G., Zaleski, H., Ummat, P. K., and Datars, W. R., Phys. Rev. B 37, 9029 (1988).CrossRefGoogle Scholar
41Yosida, Y. and Tanuma, S., Synth. Metals 23, 199 (1988).CrossRefGoogle Scholar
42Lye, Y., Takahashi, O., Tanuma, S., Tsuji, K., and Minomura, S., J. Phys. Soc. Jpn. 51, 475 (1982).Google Scholar
43Syassen, K., Sonnenschein, R., Hanfland, M., and Beister, H. J., Synth. Metals 34, 293 (1989).CrossRefGoogle Scholar
44Hoffman, D. M., Heintz, R. E., Doll, G. L., and Eklund, P. C., Phys. Rev. B 32, 1278 (1985).CrossRefGoogle Scholar
45Blinowski, J., Hao, N. H., Rigaux, C., Vieren, J. P., Le Toullec, R., Furdin, G., Hérold, A., and Melin, J., J. Phys. (Paris) 41, 47 (1980); Blinowski, J. and Rigaux, C., J. Phys. (Paris) 41, 667 (1980).CrossRefGoogle Scholar
46Homma, H. and Clarke, R., Phys. Rev. B 31, 5865 (1985).CrossRefGoogle Scholar
47Hwang, D. M., Qian, X. W., and Solin, S. A., Phys. Rev. Lett. 53, 1473 (1984); Levi-Setti, R., Crow, G., Wang, Y. L., Parker, N. W., Mittleman, R., and Hwang, D. M., Phys. Rev. Lett. 54, 2615 (1985).CrossRefGoogle Scholar
48Houser, B., Homma, H., and Clarke, R., Phys. Rev. B 30, 4802 (1984).CrossRefGoogle Scholar
49Sundqvist, B. and Lundberg, B., J. Phys. C 19, 6915 (1986).CrossRefGoogle Scholar
50Andersson, O. E., Sundqvist, B., McRae, E., Lelaurain, M., and Marêché, J. F., J. Mater. Res. (1995, in press).Google Scholar
51See, for example, Forro, L., Ilakovac, V., Cooper, J. R., Ayache, C., and Henry, J-Y., Phys. Rev. B 46, 6626 (1992); Gray, K. E. and Kim, D.H., Phys. Rev. Lett. 70, 1693 (1993); Rojo, A.G. and Levin, K., Phys. Rev. B 48, 16861 (1993).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A study of temperature and pressure-induced structural and electronic changes in SbCl5 intercalated graphite: Part III. Analysis of the T and p dependence of the c-axis resistivity
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A study of temperature and pressure-induced structural and electronic changes in SbCl5 intercalated graphite: Part III. Analysis of the T and p dependence of the c-axis resistivity
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A study of temperature and pressure-induced structural and electronic changes in SbCl5 intercalated graphite: Part III. Analysis of the T and p dependence of the c-axis resistivity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *