Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T09:27:31.296Z Has data issue: false hasContentIssue false

Study of decagonal approximant and γ-brass-type compounds in Al–Cr–Fe thin films

Published online by Cambridge University Press:  03 March 2011

V. Demange*
Laboratoire de Science et Génie des Matériaux et de Métallurgie, UMR CNRS-INPL-UHP 7584, Ecole des Mines, Parc de Saurupt, F-54042 Nancy, France
J. Ghanbaja
Service Commun de Microscopie Electronique à Transmission, UHP Nancy I, F-54042 Vandoeuvre-les-Nancy Cedex, France
C. Beeli
Laboratory of Solid State Physics. ETH Zürich, CH-8093, Zurich, Switzerland
F. Machizaud
Laboratoire de Science et Génie des Matériaux et de Métallurgie, UMR CNRS-INPL-UHP 7584, Ecole des Mines, Parc de Saurupt, F-54042 Nancy, France
J.M. Dubois
Laboratoire de Science et Génie des Matériaux et de Métallurgie, UMR CNRS-INPL-UHP 7584, Ecole des Mines, Parc de Saurupt, F-54042 Nancy, France
a)Address all correspondence to this author. Present address: Laboratoire de Science et Génie des Surfaces, UMR CNRS 7570, Ecole des Mines, Parc de Saurupt, F-54042 Nancy, France. e-mail:
Get access


This paper reports the preparation conditions and structure characteristics of Al–Cr–Fe very thin films (10–30 nm) obtained by the flash evaporation technique. The films are either amorphous or crystallized, depending on the thickness of the sample and temperature of the substrate. Annealing of amorphous films leads to crystallization of intermetallic phases that are all linked with quasicrystals. In particular, we have identified by transmission electron microscopy the following structures: body-centered-cubic (bcc) γ-brass phase, monoclinic λ–Al13(Cr,Fe)4 phase, and orthorhombic O1-phase, all of them already observed in this system, together with four new structures, i.e., a face-centered-cubic (fcc) γ-brass phase (superstructure of the bcc phase), monoclinic λ′-phase (related to the λ-phase) and two orthorhombic phases (1/1/; 1/1) and (1/0; 2/1) approximants of the decagonal phase). In this study, we point out the occurrence of twin defects of the λ–Al13(Cr,Fe)4 phase. Films prepared directly in the crystalline state comprise the O1 approximant. Electron energy loss spectroscopy measurements show that all films are not oxidized except for the presence of a native oxide layer that forms in ambient atmosphere with a thickness that cannot exceed 0.3 nm. Optical properties were investigated and show that films need to be large enough (>30 nm) to reproduce the properties of bulk alloys. Finally, contact angle wetting measurements reveal that the presence of such films on a substrate, even at very low thickness, considerably decreases the wetting behavior by water.

Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Johann, L., Naciri, A. En, Broch, L., Demange, V., Machizaud, F. and Dubois, J.M.Spectroscopic ellipsometric characterization of approximant thin films of Al–Cr–Fe deposited on glass substrates. Physica E. 17, 552 (2003).CrossRefGoogle Scholar
2.Demange, V., PhD, Thesis Dissertation, INPL, (unpublished).Google Scholar
3.Demange, V., Wu, J.S., Brien, V., Machizaud, F. and Dubois, J.M.: New approximant phases in AlCrFe. Mater. Sci. Eng. A 294–296, 79 (2000).CrossRefGoogle Scholar
4.Demange, V., Anderegg, J.W., Ghanbaja, J., Machizaud, F., Sordelet, D.J., Besser, M., Thiel, P.A. and Dubois, J.M.: Surface oxidation of AlCrFe alloys characterized by x-ray photoelectron spectroscopy. Appl. Surf. Sci. 173, 327 (2001).CrossRefGoogle Scholar
5.Bradley, A.J. and Lu, S.S.: An x-ray study of the chromium-aluminium equilibrium diagram. J. Inst. Met. 60, 319 (1937).Google Scholar
6.Palm, M.: The Al–Cr–Fe system-phases and phase equilibria in the Al–rich corner. J. Alloys Compd. 252, 192 (1997).CrossRefGoogle Scholar
7.Brandon, J.K., Pearson, W.B., Riley, P.W., Chieh, P.C. and Stokhuyzen, R.: γ-brasses with R cells. Acta Crystallogr. B 33, 1088 (1977).CrossRefGoogle Scholar
8.Bradley, A.J. and Lu, S.S.: The crystal structures of Cr2Al and Cr5Al8. Z. Krist. 96, 20 (1937).Google Scholar
9.Booth, M.H., Brandon, J.K., Brizard, R.Y., Chieh, C. and Pearson, W.B.γ-brasses with F cells. Acta Crystallogr. B 33, 30 (1977).CrossRefGoogle Scholar
10.Brandon, J.K., Chieh, P.C., Pearson, W.B. and Riley, P.W.: An error parameter analysis of tetrahedral configurations in γ brass structures. Acta Crystallogr. A 31, 236 (1975).CrossRefGoogle Scholar
11.Arnberg, L., Jonsson, A. and Westman, S.: The structure of the δ-phase in the Cu–Sn system: A phase of γ-brass type with an 18Å superstructure. Acta Crystallogr. A 31 S98 (1975).Google Scholar
12.Ge, S.P. and Kuo, H.K.: Ordered γ-brass structures coexisting with the decagonal quasicrystal in a Ga46Fe23Cu23Si8 alloy. J. Mater. Res. 14, 2799 (1999).CrossRefGoogle Scholar
13.Dong, C. and Dubois, J.M.: Quasicrystals and crystalline phases in Al65Cu10Fe10Cr5 alloy. J. Mater. Sci. 26, 1647 (1991).CrossRefGoogle Scholar
14.Selke, H., Vogg, U. and Ryder, P.L.: Approximants of the icosahedral phase in as-cast Al65Cu20Cr15. Philos. Mag. B 65, 421 (1992).CrossRefGoogle Scholar
15.Liu, W. and Köster, U.: Eutectoid decomposition of the icosahedral quasicrystals in melt-spun Al65Cu20Cr15 alloys. Mater. Sci. Eng. A 154, 193 (1992).CrossRefGoogle Scholar
16.Khare, V., Lalla, N.P., Tiwari, R.S. and Srivastava, O.N.: On the new structural phases in Al65Cu20Cr15 quasicrystalline alloy. J. Mater. Res. 10, 1905 (1995).CrossRefGoogle Scholar
17.Sugiyama, K., Saito, H. and Hiraga, K.: On the crystal structures of the Al–Cu–Cr alloy system. J. Alloy. Comp. 342, 148 (2002).CrossRefGoogle Scholar
18.Qi, Y.H., Zhang, Z.P., Hei, Z.K. and Dong, C.: The microstructure analysis of Al–Cu–Cr phases in Al65Cu20Cr15 quasicrystalline particles/Al base composites. J. Alloys Compd. 285, 221 (1999).CrossRefGoogle Scholar
19.Johansson, A. and Westman, S.: Determination of the structure of cubic gamma-Pt,Zn: A phase of gamma brass type with Å superstructure. Acta Chem. Scand. A 24, 3471 (1970).CrossRefGoogle Scholar
20.Westin, L. and Edshammar, L.E.: On the crystal structure of RhMg6. Acta Chem. Scand. A 25, 1480 (1971).CrossRefGoogle Scholar
21.Arnberg, L., Jonsson, A. and Westman, S.: The structure of the δ-phase in the Cu–Sn system. A phase of γ-brass type with an 18 Å superstructure. Acta Chem. Scand. A 30, 187 (1976).CrossRefGoogle Scholar
22.Lidin, S., Jacob, M. and Larsson, A.K.: (Fe,Ni)Zn6.5, a superstructure of γ-brass. Acta Crystallogr. C 50, 340 (1994).CrossRefGoogle Scholar
23.Barbier, J.N., Tamura, N. and Verger-Gaugry, J.L.: Monoclinic Al13Fe4 approximant phase: A link between icosahedral and decagonal phases. J. Non-Cryst. Solids 153–154, 126 (1993).CrossRefGoogle Scholar
24.Zou, X.D., Fung, K.K. and Kuo, K.H.: Orientation relationship of decagonal quasicrystal and tenfold twins in rapidly cooled Al–Fe alloy. Phys. Rev. B 35, 4526 (1987).CrossRefGoogle ScholarPubMed
25.Ma, X.L. and Kuo, K.H.: Crystallographic characteristics of the Al–Co decagonal quasicrystal and its monoclinic approximant τ2-Al13Co4. Metall. Mater. Trans. A 25, 47 (1994).CrossRefGoogle Scholar
26.Grin, J., Burkhardt, U. and Ellner, M.: Refinement of the Fe4Al13 structure and its relationships to the quasihomologocal homeotypical structures. Z. Kristall. 209, 479 (1994).CrossRefGoogle Scholar
27.Grin, J., Burkhardt, U., Ellner, M. and Peters, K.: Crystal structure of orthorhombic Co4Al13. J. Alloys Compd. 206, 243 (1994).CrossRefGoogle Scholar
28.Saito, K., Sugiyama, K. and Hiraga, K.: Al13M4-type structures and atomic models of their twins. Mater. Sci. Eng. A 294–296, 279 (2000).CrossRefGoogle Scholar
29.Ma, X.L., Liebertz, H. and Köster, U.: Multiple twins of monoclinic Al13Fe4 showing pseudo-orthorhombic and fivefold symmetries. Phys. Status Solidi 158, 359 (1996).CrossRefGoogle Scholar
30.Cahn, C. and Krivanek, O.L.EELS Atlas. Edited by Facility, ASU HREM, Tempe, AZ and Gatan Warrendale, PA (1983).Google Scholar
31.Demange, V., Anderegg, J.W., Machizaud, F., Sordelet, D.J., Thiel, P.A. and Dubois, J.M.: New approximants in the Al–Cr–Fe system and their oxidation resistance. J. Alloys Compd. 342, 24 (2002).CrossRefGoogle Scholar
32.Demange, V., Milandri, A., de Weerd, M.C., Machizaud, F., Jeandel, G. and Dubois, J.M.: Optical conductivity of Al–Cr–Fe approximant compounds. Phys. Rev. B 65, 144205 (2002).CrossRefGoogle Scholar