Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-rn2sj Total loading time: 0.361 Render date: 2022-08-17T21:00:19.639Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Structural, optical, and electronic properties of room temperature ferromagnetic GaCuN film grown by hybrid physical-chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Chul Hwan Choi*
Affiliation:
Materials Science and Engineering Department, POSTECH, Pohang, Gyungbuk 790-784, Republic of Korea
Seon Hyo Kim
Affiliation:
Materials Science and Engineering Department, POSTECH, Pohang, Gyungbuk 790-784, Republic of Korea
Yoon Hee Jeong
Affiliation:
Department of Physics, POSTECH, Pohang, Gyungbuk 790-784, Republic of Korea
Myung Hwa Jung
Affiliation:
Department of Physics, Sogang University, Seoul, 100-611, Republic of Korea
*
a) Address all correspondence to this author. e-mail: jojo74@postech.ac.kr
Get access

Abstract

Ferromagnetic Cu-doped GaN film was grown on a GaN-buffered sapphire (0001) substrate by a hybrid physical-chemical-vapor-deposition method (HPCVD). The GaCuN film (Cu: 3.6 at.%) has a highly c-axis-oriented hexagonal wurtzite crystal structure, which is similar to GaN buffer but without any secondary phases such as metallic Cu, CuxNy, and CuxGay compounds. Two weak near-band edge (NBE) emissions at 3.38 eV and donor-acceptor-pair (DAP) transition at 3.2 eV with a typical strong broad yellow emission were observed in photoluminescence spectra for GaN buffer. In contrast, the yellow emission was completely quenched in GaCuN film because Ga vacancies causing the observed yellow emission in undoped GaN were substituted by Cu atoms. In addition, GaCuN film exhibits a blue shift of NBE emission, which could be explained with the +2 oxidation state of Cu ions, replacing +3 Ga ions resulting in band gap increment. The valance sate of Cu in GaCuN film was also confirmed by x-ray photoelectron spectroscopy (XPS) analysis. The GaCuN film shows ferromagnetic ordering and possesses a residual magnetization of 0.12 emu/cm3 and a coercive field of 264 Oe at room temperature. The unpaired spins in Cu2+ ions (d9) are most likely to be responsible for the observed ferromagnetism in GaCuN.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Das Sarma, S.: Ferromagnetic semiconductors: A giant appears in spintronics. Nat. Mater. 2, 292 (2003).CrossRefGoogle ScholarPubMed
2.Pearton, S.J., Abernathy, C.R., Norton, D.P., Hebard, A.F., Park, Y.D., Boatner, L.A., and Budai, J.D.: Advances in wide bandgap materials for semiconductor spintronics. Mater. Sci. Eng., R 40, 137 (2003).CrossRefGoogle Scholar
3.Pearton, S.J., Norton, D.P., Frazier, R., Han, S.Y., Abernathy, C.R., and Zavada, J.M.: Spintronics device concepts. IEE Proc: Circuits Syst. Mag. 152, 312 (2005).Google Scholar
4.Yagami, K., Tulapurkar, A.A., Fukushima, A., and Suzuki, Y.: Low-current spin-transfer switching and its thermal durability in a low-saturation-magnetization nanomagnet. Appl. Phys. Lett. 85, 5634 (2004).CrossRefGoogle Scholar
5.Zhang, S., Levy, P.M., and Fert, A.: Mechanisms of spin-polarized current-driven magnetization switching. Phys. Rev. Lett. 88, 236601 (2002).CrossRefGoogle ScholarPubMed
6.Ku, K.C., Potashnik, S.J., Wang, R.F., Chun, S.H., Schiffer, P., Samarth, N., Seong, M.J., Mascarenhas, A., Johnston-Halperin, E., Myers, R.C., Gossard, A.C., and Awschalom, D.D.: Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn] As epilayers. Appl. Phys. Lett. 82, 2302 (2003).CrossRefGoogle Scholar
7.Sato, K. and Katayama-Yoshida, H.: Material design of GaN-based ferromagnetic diluted magnetic semiconductors. Jpn. J. Appl. Phys. 40, L485 (2001).CrossRefGoogle Scholar
8.Asahi, H., Zhou, Y.K., Hashimoto, M., Kim, M.S., Li, X.J., Emura, S., and Hasegawa, S.: GaN-based magnetic semiconductors for nanospintronics., J. Phys. Condens. Matter 16, S5555 (2004).CrossRefGoogle Scholar
9.Biswas, K., Sardar, K., and Rao, C.N.R.: Ferromagnetism in Mn-doped GaN nanocrystals prepared solvothermally at low temperatures. Appl. Phys. Lett. 89, 132503 (2006).CrossRefGoogle Scholar
10.Shon, Y., Lee, S., Jeon, H.C., Park, Y.S., Kim, D.Y., Kang, T.W., Kim, J.S., Kim, E.K., Fu, D.J., Fan, X.J., Park, Y.J., Baik, J.M., and Lee, J.L.: Origin of clear ferromagnetism for p-type GaN implanted with Fe[sup +] (5 and 10 at.%). Appl. Phys. Lett. 89, 082505 (2006).CrossRefGoogle Scholar
11.Cui, X.Y., Medvedeva, J.E., Delley, B., Freeman, A.J., Newman, N., and Stampfl, C.: Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN. Phys. Rev. Lett. 95, 256404 (2005).CrossRefGoogle ScholarPubMed
12.Dhar, S., Brandt, O., Trampert, A., Daweritz, L., Friedland, K.J., Ploog, K.H., Keller, J., Beschoten, B., and Guntherodt, G.: Origin of high-temperature ferromagnetism in (Ga,Mn)N layers grown on 4H–SiC(0001) by reactive molecular-beam epitaxy. Appl. Phys. Lett. 82, 2077 (2003).CrossRefGoogle Scholar
13.Przybylinska, H., Bonanni, A., Wolos, A., Kiecana, M., Sawicki, M., Dietl, T., Malissa, H., Simbrunner, C., Wegscheider, M., and Sitter, H.: Magnetic properties of a new spintronic material–GaNFe. Mater. Sci. Eng., B 126, 222 (2006).CrossRefGoogle Scholar
14.Lee, J-H., Choi, I-H., Shin, S., Lee, S., Lee, J., Whang, C., Lee, S-C., Lee, K-R., Baek, J-H., Chae, K.H., and Song, J.: Room-temperature ferromagnetism of Cu-implanted GaN. Appl. Phys. Lett. 90, 032504 (2007).CrossRefGoogle Scholar
15.Wu, R.Q., Peng, G.W., Liu, L., Feng, Y.P., Huang, Z.G., and Wu, Q.Y.: Cu-doped GaN: A dilute magnetic semiconductor from first-principles study. Appl. Phys. Lett. 89, 062505 (2006).CrossRefGoogle Scholar
16.Seong, H.K., Kim, J.Y., Kim, J.J., Lee, S.C., Kim, S.R., Kim, U., Park, T.E., and Choi, H.J.: Room-temperature ferromagnetism in Cu doped GaN nanowires. Nano Lett. 7, 3366 (2007).CrossRefGoogle ScholarPubMed
17.Zeng, X., Pogrebnyakov, A.V., Kotcharov, A., Jones, J.E., Xi, X.X., Lysczek, E.M., Redwing, J.M., Xu, S., Li, Q., Lettieri, J., Schlom, D.G., Tian, W., Pan, X., and Liu, Z-K.: In situ epitaxial MgB2 thin films for superconducting electronics. Nat. Mater. 1, 35 (2002).CrossRefGoogle ScholarPubMed
18.Chakraborti, D., Narayan, J., and Prater, J.T.: Room temperature ferromagnetism in Zn1-xCu xO thin films. Appl. Phys. Lett. 90, 062504 (2007).CrossRefGoogle Scholar
19.Hou, D.L., Ye, X.J., Meng, H.J., Zhou, H.J., Li, X.L., Zhen, C.M., and Tang, G.D.: Magnetic properties of n-type Cu-doped ZnO thin films. Appl. Phys. Lett. 90, 142502 (2007).CrossRefGoogle Scholar
20.Puchert, M.K., Hartmann, A., Lamb, R.N., and Martin, J.W.: Highly resistive sputtered ZnO films implanted with copper. J. Mater. Res. 11, 2463 (1996).CrossRefGoogle Scholar
21.Wagner, C.D., Naumkin, A.V., Kraut-Vass, A., Allison, J.W., Powell, C.J., and Rumble, J.R. Jr: X-ray Photoelectron Spectroscopy Database (Version 3.5) [National Institute of Standard and Technology (NIST) Online Databases, August 27, 2007].Google Scholar
22.Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy, ed. Chastain, J. (Physical Electronics Inc., 1992).Google Scholar
23.Cho, C-R., Hwang, J-Y., Kim, J-P., Jeong, S-Y., Jang, M-S., Lee, W-J., and Kim, D-H.: Ferromagnetism of heteroepitaxial Zn1-xCuxO films grown on n-GaN substrates. Jpn. J. Appl. Phys. 43, L1383 (2004).CrossRefGoogle Scholar
24.Fleischer, K., Toth, M., Phillips, M.R., Zou, J., Li, G., and Chua, S.J.: Depth profiling of GaN by cathodoluminescence microanalysis. Appl. Phys. Lett. 74, 1114 (1999).CrossRefGoogle Scholar
25.Gelhausen, O., Malguth, E., Phillips, M.R., Goldys, E.M., Strassburg, M., Hoffmann, A., Graf, T., Gjukic, M., and Stutzmann, M.: Doping-level-dependent optical properties of GaNMn. Appl. Phys. Lett. 84, 4514 (2004).CrossRefGoogle Scholar
26.Clerjaud, B., Naud, C., Deveaud, B., Lambert, B., Plot, B., Bremond, G., Benjeddou, C., Guillot, G., and Nouailhat, A.: The acceptor level of vanadium in III–V compounds. J. Appl. Phys. 58, 4207 (1985).CrossRefGoogle Scholar
27.Amano, H., Hiramatsu, K., and Akasaki, I.: Heteroepitaxial growth and the effect of strain on the luminescent properties of GaN films on (11–20) and (0001) sapphire substrates. Jpn. J. Appl. Phys., Part 2 2, L1384 (1988).CrossRefGoogle Scholar
28.Herng, T.S., Lau, S.P., Yu, S.F., Yang, H.Y., Wang, L., Tanemura, M., and Chen, J.S.: Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. Appl. Phys. Lett. 90, 032509 (2007).CrossRefGoogle Scholar
29.Herbich, M., Twardowski, A., Scalbert, D., and Petrou, A.: Bound magnetic polaron in Cr-based diluted magnetic semiconductors. Phys. Rev. B: Condens. Matter 58, 7024 (1998).CrossRefGoogle Scholar
30.Kaminski, A. and Das Sarma, S.: Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002).CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Structural, optical, and electronic properties of room temperature ferromagnetic GaCuN film grown by hybrid physical-chemical vapor deposition
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Structural, optical, and electronic properties of room temperature ferromagnetic GaCuN film grown by hybrid physical-chemical vapor deposition
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Structural, optical, and electronic properties of room temperature ferromagnetic GaCuN film grown by hybrid physical-chemical vapor deposition
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *