Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-14T14:59:29.129Z Has data issue: false hasContentIssue false

Strength of silicon containing nanoscale flaws

Published online by Cambridge University Press:  03 March 2011

Antonia Pajares
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8500
Marina Chumakov
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8500
Brian R. Lawn*
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8500
*
c) Address all correspondence to this author. e-mail: brian.lawn@nist.gov
Get access

Abstract

Silicon is a principal material in submicrometer-scale devices. Components in such devices are subject to intense local stress concentrations from nanoscale contacts during function. Questions arise as to the fundamental nature and extent of any strength-degrading damage incurred at such contacts on otherwise pristine surfaces. Here, a simple bilayer test procedure is adapted to probe the strengths of selected areas of silicon surfaces after nanoindentation with a Berkovich diamond. Analogous tests on silicate glass surfaces are used as a control. The strengths increase with diminishing contact penetration in both materials, even below thresholds for visible cracking at the impression corners. However, the strength levels in the subthreshold region are much lower in the silicon, indicating exceptionally high brittleness and vulnerability to small-scale damage in this material. The results have important implications in the design of devices with silicon components.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bushan, B.Tribology and Mechanics of Magnetic Storage Devices, Second ed. (Springer-Verlag, New York, 1996).CrossRefGoogle Scholar
2Kahn, H., Tayebi, N., Ballarini, R., Mullen, R.L. and Heuer, A.H.: Sens. Actuators A 82 274 (2000).CrossRefGoogle Scholar
3Namazu, T., Isono, Y. and Tanaka, T.: Journal of Microelectromechanical Systems 9 450 (2000).Google Scholar
4Ding, J.N., Meng, Y.G. and Wen, S.Z.: J. Mater. Res. 16 2223 (2001).CrossRefGoogle Scholar
5Maurer, R.D. in Strength of Inorganic Glass, edited by Kurkjian, C.R. (Plenum Press, New York, 1985), pp. 291308.Google Scholar
6Lawn, B.R.Fracture of Brittle Solids, Second ed. (Cambridge University Press, Cambridge, 1993), Ch. 8.CrossRefGoogle Scholar
7Dabbs, T.P., Marshall, D.B. and Lawn, B.R.: J. Am. Ceram. Soc. 63 224 (1980).CrossRefGoogle Scholar
8Dabbs, T.P. and Lawn, B.R.: Phys. Chem. Glasses 23 93 (1982).Google Scholar
9Dabbs, T.P. and Lawn, B.R.: J. Am. Ceram. Soc. 68 563 (1985).CrossRefGoogle Scholar
10Jakus, K., Ritter, J.E., Choi, S.R., Lardner, T. and Lawn, B.R.: J. Non-Cryst. Solids 102 82 (1988).Google Scholar
11Lin, B. and Matthewson, M.J.: Philos. Mag. A 74 1235 (1996).CrossRefGoogle Scholar
12Chai, H., Lawn, B.R. and Wuttiphan, S.: J. Mater. Res. 14 3805 (1999).Google Scholar
13Rhee, Y-W., Kim, H-W., Deng, Y. and Lawn, B.R.: J. Am. Ceram. Soc. 84 1066 (2001).CrossRefGoogle Scholar
14Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L. and Lawn, B.R.: Acta Mater. 49 3719 (2001).Google Scholar
15Miranda, P., Pajares, A., Guiberteau, F., Deng, Y. and Lawn, B.R.: Acta Mater. 51 4347 (2003).Google Scholar
16Lawn, B.R., Marshall, D.B. and Chantikul, P.: J. Mater. Sci. 16 1769 (1981).Google Scholar
17Marshall, D.B., Lawn, B.R. and Chantikul, P.: J. Mater. Sci. 14 2225 (1979).Google Scholar
18Cook, R.F. and Roach, D.H.: J. Mater. Res. 1 589 (1986).Google Scholar
19Lathabai, S., Rödel, J., Lawn, B.R. and Dabbs, T.P.: J. Mater. Sci. 26 2157 (1991).CrossRefGoogle Scholar
20Swain, M.V. and Hagan, J.T.: J. Phys. D: Appl. Phys. 9 2201 (1976).Google Scholar
21Hagan, J.T. and Swain, M.V.: J. Phys. D 11 2091 (1978).Google Scholar
22Hagan, J.T.: J. Mater. Sci. 15 1417 (1980).CrossRefGoogle Scholar
23Lawn, B.R., Dabbs, T.P. and Fairbanks, C.J.: J. Mater. Sci. 18 2785 (1983).Google Scholar
24Lawn, B.R., Evans, A.G. and Marshall, D.B.: J. Am. Ceram. Soc. 63 574 (1980).Google Scholar
25Bradby, J.G., Williams, J.S., Wong-Leung, J., Swain, M.V. and Munroe, P.: J. Mater. Res. 16 1500 (2001).Google Scholar
26Bradby, J.G., Williams, J.S., Wong-Leung, J., Kucheyev, S.O., Swain, M.V. and Munroe, P.: Philos. Mag. A 82 1931 (2002).Google Scholar
27Zarudi, I., Zhang, L.C. and Swain, M.V.: J. Mater. Res. 18 758 (2003).Google Scholar
28Lawn, B.R. and Marshall, D.B.: J. Am. Ceram. Soc. 62 347 (1979).CrossRefGoogle Scholar