Hostname: page-component-5d59c44645-dknvm Total loading time: 0 Render date: 2024-02-22T01:52:41.328Z Has data issue: false hasContentIssue false

The stability of YBa2Cu3O7−x in contact with silver

Published online by Cambridge University Press:  03 March 2011

Sern-Hau Lin
Chemical Engineering Department, National Taiwan University, Taipei, Taiwan
Nae-Lih Wu*
Chemical Engineering Department, National Taiwan University, Taipei, Taiwan
a)Author to whom correspondence should be addressed.
Get access


The stability of YBa2Cu3O7−x (the 123 compound) in contact with silver (Ag) at temperatures below 900 °C was investigated by conducting SEM and EDX analyses on 123 agglomerates that were enclosed in a dense Ag matrix and subjected to various thermal treatments. The stability of the 123 agglomerates was found to depend heavily on the oxygen content in the Ag matrix. In the case of insufficient oxygen content in Ag, the 123 agglomerates, which were as large as 150 μm thick, decomposed readily at temperatures above 500 °C. The complete decomposition process can be summarized as continuous extraction of Ba from the 123 oxide into the surrounding Ag matrix and is proposed to be driven by high mutual solubilities between Ag and Ba under the oxygen-lean condition. Prolonged preoxygenation of the (123 + Ag) mixture powders at temperatures above 400 °C prevents the occurrence of 123 decomposition in compacted samples during subsequent heat treatment, suggesting that the critical oxygen content in Ag for stabilizing the 123 compound to be no higher than 10−3 at. % (the oxygen saturation solubility at 400 °C). The findings may have implications for the processing of other Ba-containing high-Tc superconducting oxides as well.

Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1Fujimoto, H., Murakami, M., Oyama, T., Shiohara, Y., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 29, L1793 (1990).Google Scholar
2Crabtree, G. W., Downey, J. W., Flandermeyer, B. K., Jorgensen, J. D., Klippert, T. E., Kupperman, D. S., Kwok, W. K., Lam, D. J., Mitchell, A. W., McKale, A.G., Nevitt, M. V., Nowicki, L. J., Paulikas, A. P., Poeppel, R. B., Rothman, S. J., Routbort, J. L., Singh, J. P., Sowers, C. H., Umezawa, A., Veal, B. W., and Baker, J. E., Adv. Ceram. Mater. 2(3B), 444 (1987).Google Scholar
3Cook, R. F., Shaw, T. M., and Duncombe, P. R., Adv. Ceram. Mater. 2(3B), 444 (1987).Google Scholar
4Peterson, G. G., Weinberger, B. R., Lynds, L., and Krasinski, H. A., J. Mater. Res. 3, 605 (1988).Google Scholar
5Singh, J. P., Leu, H. J., Poeppel, R. B., Van Voorhees, E., Goudey, G. T., Winsley, K., and Shi, D., J. Appl. Phys. 66, 3154 (1989).Google Scholar
6Prasad, R., Soni, N. C., Mohan, A., Khera, S. K., Nair, K. U., and Gupta, C. K., Mater. Lett. 7, 9 (1988).Google Scholar
7Wei, W. C. and Lee, W. H., Jpn. J. Appl. Phys. 31, 1305 (1992).Google Scholar
8Singh, J. P., Shi, D., and Capone, D. W., Appl. Phys. Lett. 53, 237 (1988).Google Scholar
9Shi, D., Xu, M., Chen, J. G., Umezawa, A., Lanan, S. G., Miller, D., and Goretta, K. C., Mater. Lett. 9, 1 (1989).Google Scholar
10Nishio, T., Itoh, Y., Ogasawara, F., Suganuma, M., Yamada, Y., and Mizutani, U., J. Mater. Sci. 24, 3228 (1989).Google Scholar
11Dwir, B., Affronte, M., and Pavuna, D., Appl. Phys. Lett. 55, 399 (1989).Google Scholar
12Plechacek, V., Landa, V., Blazek, Z., Sneider, J., Trejbalova, Z., and Cermak, M., Physica C 153–155, 878 (1988).Google Scholar
13Imanka, N., Saito, F., Imai, H., and Adachi, G., Jpn. J. Appl. Phys. 28, L580 (1989).Google Scholar
14Pavuna, D., Berger, H., Affronte, M., Vandermass, J., Caponi, J. J., Guillot, M., Lejay, P., and Tholence, J. L., Solid State Commun. 68, 535 (1988).Google Scholar
15Pavuna, D., Berger, H., Tholence, J. L., Affronte, M., Sanjines, R., Dubas, A., Bugnon, Ph., and Vasey, F., Physica C 153–155, 1339 (1988).Google Scholar
16Malik, M. K., Nair, V. D., Biswas, A. R., Raghavan, R. V., Chadahn, P., Mishra, P. K., Kumat, G. R., and Dasannacharya, B. A., Appl. Phys. Lett. 52, 1525 (1988).Google Scholar
17Jin, S., Sherwood, R. C., Tiefel, T. H., van Dover, R.R., and Johnson, D.W. Jr., Appl. Phys. Lett. 51, 3 (1987).Google Scholar
18Huang, C. Y., Tsi, H. H., and Wu, M. K., Mod. Phys. Lett. B 3, 525 (1989).Google Scholar
19Plechacek, V., Landa, V., Blazek, Z., Trejbalova, Z., and Cerms, M., Physica C 153–155, 878 (1988).Google Scholar
20Goyal, A., Burns, S. J., and Funkenbusch, P. D., Physica C 168, 405 (1990).Google Scholar
21Itoh, M., Ishigaki, H., Ohyama, T., Minemoto, T., Nojiri, H., and Motokawa, M., J. Mater. Res. 6, 2272 (1991).Google Scholar
22Wu, N-L., Wei, T-C., Hou, S-Y., and Wong, S-Y., J. Mater. Res. 5, 2056 (1990).Google Scholar
23Metals Reference Book, edited by Smithells, C. J. and Brandes, A., 5th ed. (Butterworth, London and Boston, 1976), p. 852.Google Scholar
24Loehman, R. E., Tomsia, A. P., Pask, J. A., and Carim, A. H., Physica C 170, 1 (1990).Google Scholar
25Bruzzone, G., Ferretti, M., and Merlo, F., J. Less-Comm. Metals 128, 259 (1987).Google Scholar
26Deslandes, F., Raveau, B., Dubots, P., and Legat, D., Solid State Commun. 71, 407 (1989).Google Scholar
27Binary Alloy Phase Diagrams, edited by Massalski, T. B., Murray, J. L., Bennett, L. H., and Baker, H. (American Society for Metals, Metals Park, OH, 1986), p. 19.Google Scholar