Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-gcfkn Total loading time: 0.241 Render date: 2021-09-22T22:12:27.198Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Spatial localization of Mms6 during biomineralization of Fe3O4 nanocrystals in Magnetospirillum magneticum AMB-1

Published online by Cambridge University Press:  16 February 2016

Zachery Oestreicher
Affiliation:
School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; and School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43210, USA
Eric Mumper
Affiliation:
School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA
Carol Gassman
Affiliation:
Department of Chemistry, Columbia Basin College, Pasco, Washington 99301, USA
Dennis A. Bazylinski
Affiliation:
School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
Steven K. Lower*
Affiliation:
School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA; and School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43210, USA
Brian H. Lower*
Affiliation:
School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43210, USA
*Corresponding
a) Address all correspondence to this author. e-mail: Lower.30@osu.edu
Get access

Abstract

Magnetotactic bacteria mineralize nanometer-size crystals of magnetite (Fe3O4) through a series of protein-mediated reactions that occur inside of organelles called magnetosomes. Mms6 is a transmembrane protein thought to play a key role in magnetite mineralization. We used both electron and fluorescent microscopy to examine the subcellular location of Mms6 protein within single cells of Magnetospirillum magneticum AMB-1 using Mms6-specific antibodies. We also purified magnetosomes from M. magneticum to determine if Mms6 was physically attached to magnetite crystals. Our results show that Mms6 proteins are present during crystal growth, and Mms6 is found in direct contact with the magnetite crystals or within the lipid/protein membrane surrounding the magnetite crystals. Mms6 was not detected at other subcellular locations within the bacteria or isolated fractions. Because Mms6 was found to completely surround the magnetosomes rather than being localized to one specific area of the magnetosome, it appears that this protein could act on the entire magnetite crystal during the biomineralization process. This supports a model in which Mms6 functions to regulate Fe3O4 crystal morphology. This knowledge is important for future in vitro experiments utilizing Mms6 to synthesize tailored nanomagnets with specific physical or magnetic properties.

Type
Biomineralization and Biomimetics Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tartaj, P., Morales, M.P., Gonzalez-Carreno, T., Veintemillas-Verdaguer, S., and Serna, C.J.: Advances in magnetic nanoparticles for biotechnology applications. J. Magn. Magn. Mater. 290, 28 (2005).CrossRefGoogle Scholar
Matsunaga, T. and Arakaki, A.: Molecular bioengineering of bacterial magnetic particles for biotechnological applications. In Magnetoreception and Magnetosomes in Bacteria, Schuler, D. ed.; Springer: New York, 2007; p. 227254.CrossRefGoogle Scholar
Prozorov, T., Palo, P., Wang, L., Nilsen-Hamilton, M., Jones, D., Orr, D., Mallapragada, S.K., Narasimhan, B., Canfield, P.C., and Prozorov, R.: Cobalt ferrite nanocrystals: Out-performing magnetotactic bacteria. ACS Nano 1, 228 (2007).CrossRefGoogle ScholarPubMed
Deng, Y., Qi, D., Deng, C., Zhang, X., and Zhao, D.: Superparamagnetic high-magnetization microspheres with an Fe3O4-SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 130, 28 (2008).CrossRefGoogle ScholarPubMed
Lee, J., Lee, Y., Youn, J.K., Bin Na, H., Yu, T., Kim, H., Lee, S., Koo, Y., Kwak, J.H., Park, H.G., Chang, H.N., Hwang, M., Park, J., Kim, J., and Hyeon, T.: Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 4, 143 (2008).CrossRefGoogle ScholarPubMed
Wang, Y., Ng, Y.W., Chen, Y., Shuter, B., Yi, J., Ding, J., Wang, S., and Feng, S.: Formulation of superparamagnetic iron oxides by nanoparticles of biodegradable polymers for magnetic resonance Imaging. Adv. Funct. Mater. 18, 308 (2008).CrossRefGoogle Scholar
Tanaka, M., Arakaki, A., Staniland, S.S., and Matsunaga, T.: Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria. Appl. Environ. Microbiol. 76, 5526 (2010).CrossRefGoogle ScholarPubMed
Tang, Y., Wang, D., Zhou, C., Ma, W., Zhang, Y., Liu, B., and Zhang, S.: Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther. 19, 1187 (2012).CrossRefGoogle ScholarPubMed
Huangand, H.S. and Hainfeld, J.F.: Intravenous magnetic nanoparticle cancer hyperthermia. Int. J. Nanomed. 8, 2521 (2013).Google Scholar
Tangand, S.C.N. and Lo, I.M.C.: Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 47, 2613 (2013).Google Scholar
Li, L., Ding, J., and Xue, J.: A facile green approach for synthesizing monodisperse magnetite nanoparticles. J. Mater. Res. 25, 810 (2010).CrossRefGoogle Scholar
Frankel, R.B., Blakemore, R.P., and Wolfe, R.S.: Magnetite in freshwater magnetotactic bacteria. Science 203, 1355 (1979).CrossRefGoogle ScholarPubMed
Balkwill, D.L., Maratea, D., and Blakemore, R.P.: Ultrastructure of a magnetotactic spirillum. J. Bacteriol. 141, 1399 (1980).Google ScholarPubMed
Heywood, B.R., Bazylinski, D.A., Garrattreed, A., Mann, S., and Frankel, R.B.: Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften 77, 536 (1990).CrossRefGoogle Scholar
Bazylinski, D.A. and Frankel, R.B.: Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217 (2004).CrossRefGoogle ScholarPubMed
Murat, D., Quinlan, A., Vali, H., and Komeili, A.: Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl. Acad. Sci. U. S. A 107, 5593 (2010).CrossRefGoogle ScholarPubMed
Naresh, M., Hasija, V., Sharma, M., and Mittal, A.: Synthesis of cellular organelles containing nano-magnets stunts growth of magnetotactic bacteria. J. Nanosci. Nanotechnol. 10, 4135 (2010).CrossRefGoogle ScholarPubMed
Greenberg, M., Canter, K., Mahler, I., and Tornheim, A.: Observation of magnetoreceptive behavior in a multicellular magnetotactic prokaryote in higher than geomagnetic fields. Biophys. J. 88, 1496 (2005).CrossRefGoogle Scholar
Ullrich, S., Kube, M., Schubbe, S., Reinhardt, R., and Schuler, D.: A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol. 187, 7176 (2005).CrossRefGoogle Scholar
Matsunaga, T., Okamura, Y., Fukuda, Y., Wahyudi, A.T., Murase, Y., and Takeyama, H.: Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp strain AMB-1. DNA Res. 12, 157 (2005).CrossRefGoogle Scholar
Komeili, A., Vali, H., Beveridge, T.J., and Newman, D.K.: Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl. Acad. Sci. U. S. A. 101, 3839 (2004).CrossRefGoogle ScholarPubMed
Lefevreand, C.T. and Wu, L.: Evolution of the bacterial organelle responsible for magnetotaxis. Trends Microbiol. 21, 534 (2013).CrossRefGoogle Scholar
Arakaki, A., Webb, J., and Matsunaga, T.: A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem. 278, 8745 (2003).CrossRefGoogle ScholarPubMed
Prozorov, T., Mallapragada, S.K., Narasimhan, B., Wang, L., Palo, P., Nilsen-Hamilton, M., Williams, T.J., Bazylinski, D.A., Prozorov, R., and Canfield, P.C.: Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater. 17, 951 (2007).CrossRefGoogle Scholar
Arakaki, A., Masuda, F., Amemiya, Y., Tanaka, T., and Matsunaga, T.: Control of the morphology and size of magnetite particles with peptides mimicking the Mms6 protein from magnetotactic bacteria. J. Colloid Interface Sci. 343, 65 (2010).CrossRefGoogle Scholar
Galloway, J.M., Arakaki, A., Masuda, F., Tanaka, T., Matsunaga, T., and Staniland, S.S.: Magnetic bacterial protein Mms6 controls morphology, crystallinity and magnetism of cobalt-doped magnetite nanoparticles in vitro. J. Mater. Chem. 21, 15244 (2011).CrossRefGoogle Scholar
Tanaka, M., Mazuyama, E., Arakaki, A., and Matsunaga, T.: Mms6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo. J. Biol. Chem. 286, 6386 (2011).CrossRefGoogle ScholarPubMed
Feng, S., Wang, L., Palo, P., Liu, X., Mallapragada, S.K., and Nilsen-Hamilton, M.: Integrated self-assembly of the Mms6 magnetosome protein to form an iron-responsive structure. Int. J. Mol. Sci. 14, 14594 (2013).CrossRefGoogle ScholarPubMed
Taoka, A., Asada, R., Sasaki, H., Anzawa, K., Wu, L-F., and Fukumori, Y.: Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum . J. Bacteriol. 188, 3805 (2006).CrossRefGoogle Scholar
Amemiya, Y., Arakaki, A., Staniland, S.S., Tanaka, T., and Matsunaga, T.: Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28, 5381 (2007).CrossRefGoogle ScholarPubMed
Arakaki, A., Yamagishi, A., Fukuyo, A., Tanaka, M., and Matsunaga, T.: Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria. Mol. Microbiol. 93, 554 (2014).CrossRefGoogle ScholarPubMed
Wang, L., Prozorov, T., Palo, P.E., Liu, X., Vaknin, D., Prozorov, R., Mallapragada, S., and Nilsen-Hamilton, M.: Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape. Biomacromolecules 13, 98 (2012).CrossRefGoogle ScholarPubMed
Wang, W., Bu, W., Wang, L., Palo, P.E., Mallapragada, S., Nilsen-Hamilton, M., and Vaknin, D.: Interfacial properties and iron binding to bacterial proteins that promote the growth of magnetite nanocrystals: X-ray reflectivity and surface spectroscopy studies. Langmuir 28, 4274 (2012).CrossRefGoogle ScholarPubMed
Valverde-Tercedor, C., Abadía-Molina, F., Martinez-Bueno, M., Pineda-Molina, E., Chen, L., Oestreicher, Z., Lower, B.H., Lower, S.K., Bazylinski, D.A., and Jimenez-Lopez, C.: Subcellular localization of the magnetosome protein MamC in the marine magnetotactic bacterium Magnetococcus marinus strain MC-1 using immunoelectron microscopy. Arch. Microbiol. 196, 481 (2014).CrossRefGoogle ScholarPubMed
Richter, M., Kube, M., Bazylinski, D.A., Lombardot, T., Gloeckner, F.O., Reinhardt, R., and Schueler, D.: Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J. Bacteriol. 189, 4899 (2007).CrossRefGoogle ScholarPubMed
Komeili, A., Li, Z., Newman, D.K., and Jensen, G.J.: Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242 (2006).CrossRefGoogle ScholarPubMed
Lohße, A., Borg, S., Raschdorf, O., Kolinko, I., Tompa, É., Pósfai, M., Faivre, D., Baumgartner, J., and Schüler, D.: Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense . J. Bacteriol. 196, 2658 (2014).CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spatial localization of Mms6 during biomineralization of Fe3O4 nanocrystals in Magnetospirillum magneticum AMB-1
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spatial localization of Mms6 during biomineralization of Fe3O4 nanocrystals in Magnetospirillum magneticum AMB-1
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spatial localization of Mms6 during biomineralization of Fe3O4 nanocrystals in Magnetospirillum magneticum AMB-1
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *