Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T11:39:17.171Z Has data issue: false hasContentIssue false

Solvothermal approach to nanocrystalline Li–Ti–O insertion hosts–solvent polarity effect

Published online by Cambridge University Press:  31 January 2011

Tereza Kostlánová
Affiliation:
J. Heyrovsky Institute of Physical Chemistry v.v.i, Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague, Czech Republic
Marina V. Makarova
Affiliation:
J. Heyrovsky Institute of Physical Chemistry v.v.i, Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague, Czech Republic
Petr Krtil*
Affiliation:
J. Heyrovsky Institute of Physical Chemistry v.v.i, Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague, Czech Republic
*
a)Address all correspondence to this author. e-mail: Petr.Krtil@jh-inst.cas.cz
Get access

Abstract

The cubic nanocrystalline Li–Ti–O oxides were prepared by the solvothermal reaction of TiO2 and LiOH at 200 °C in water and aliphatic alcohols with different dielectric constants. The reaction in all solvents leads to the formation of white ternary compounds containing Li, Ti, and O. The actual Li content in the prepared materials increases with decreasing polarity of the used solvent. All prepared materials are crystalline, and their structure can be described using a spinel structural model. The structure of materials prepared at a relative dielectric constant (ϵr) value higher than 33 is characterized by Ti disorder when the Ti atoms are distributed between both types of the available octahedral sites with approximately the same probability. The tendency to form phases with Ti disorder decreases with decreasing ϵr of the solvent. All prepared materials are active toward electrochemical Li insertion. The observed specific capacity ranges between 60 and 150 mAh/g.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ohzuku, T., Ueda, A.Yamamoto, N.: Zero strain insertion material of Li[Li1/3Ti5/3]O4. J. Electrochem. Soc. 142, 1431 1995CrossRefGoogle Scholar
2Peramunage, D.Abraham, K.M.: Preparation of of micron sized Li4Ti5O12 and its electrochemistry in lithium cells. J. Electrochem. Soc. 145, 2609 1998CrossRefGoogle Scholar
3Du Pasquier, A., Plitz, I., Gural, J., Badway, F.Amatucci, G.G.: Power-ion battery: Bridging the gap between Li ion and supercapacitor chemistries. J. Power Sources 136, 160 2004CrossRefGoogle Scholar
4Krtil, P.Fattakhova, D.: Li insertion into Li-Ti-O spinels: Voltammetric and electrochemical impedance spectroscopy study. J. Electrochem. Soc. 148, A1045 2001CrossRefGoogle Scholar
5Fattakhova, D.Krtil, P.: Electrochemical activity of hydrothermally synthesized Li-Ti-O cubic oxides towards Li insertion. J. Electrochem. Soc. 149, A1224 2002CrossRefGoogle Scholar
6Krtil, P., Dedecek, J., Kostlanova, T.Brus, J.: 6Li MAS NMR study of lithium insertion into hydrothermally prepared Li-Ti-O spinel. Electrochem. Solid State Lett. 7, A163 2004CrossRefGoogle Scholar
7Kostlanova, T., Dedecek, J.Krtil, P.: The effect of the inner particle structure on the electronic structure of the nanocrystalline Li-Ti-O spinels. Electrochim. Acta 52, 1825 2007CrossRefGoogle Scholar
8Jiang, K., Hu, X.H., Sun, H.J., Wang, D.H., Jin, X.B., Ren, Y.Y.Chen, G.Z.: Electrochemical synthesis of LiTiO2 and LiTi2O4 in molten LiCl. Chem. Mater. 16, 4324 2004CrossRefGoogle Scholar
9Rho, Y.H., Kanamura, K.Umegaki, Y.: Preparation of Li4/3 Ti5/3O4 thin film anode with high electrochemical response for re-chargeable lithium batteries by sol-gel method. Chem. Lett. (Jpn.) 30, 1322 2001CrossRefGoogle Scholar
10Kavan, L.Gratzel, M.: Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochem. Solid State Lett. 5, A39 2002CrossRefGoogle Scholar
11Shen, C.M., Zhang, X.G., Zhou, Y.K.Li, H.L.: Preparation and characterization of nanocrystalline Li4Ti5O12 by sol gel method. Mater. Chem. Phys. 78, 437 2002CrossRefGoogle Scholar
12Fattakhova, D., Petrykin, V., Brus, J., Kostlanova, T., Dedecek, J.Krtil, P.: Solvothermal synthesis and electrochemical behavior of nanocrystalline cubic Li-Ti-O oxides with cationic disorder. Solid State Ionics 176, 1877 2005CrossRefGoogle Scholar
13Lencka, M.M.Riman, R.E.: Thermodynamic modelling of hydrothermal synthesis of ceramic powders. Chem. Mater. 5, 61 1993CrossRefGoogle Scholar
14Riman, R.E., Suchanek, W.L.Lencka, M.M.: The hydrothermal crystallization of ceramics. Ann. Chim. Sci. Mater. 27, 15 2002Google Scholar
15Chen, X.B.Mao, S.S.: Synthesis of titanium dioxide (TiO2) nanomaterials. J. Nanosci. Nanotechnol. 6, 906 2006CrossRefGoogle ScholarPubMed
16Kim, C.S., Moon, B.K., Park, J.H., Chung, S.T.Son, S.M.: Synthesis of nanocrystalline TiO2 in toluene by solvothermal route. J. Cryst. Growth 254, 405 2003CrossRefGoogle Scholar
17Wang, C., Deng, Z.X., Zhang, G.H., Fan, S.S.Li, Y.D.: Synthesis of nanocrystalline TiO2 in alcohols. Powder Technol. 125, 39 2002CrossRefGoogle Scholar
18Wei, M.D., Qi, Z.M., Ichihara, M., Honma, I.Zhou, H.S.: Ultralong single crystal TiO2-B nanowires: Synthesis and electrochemical measurements. Chem. Phys. Lett. 424, 316 2006Google Scholar
19Krumm, S.: An interactive Windows program for profile fitting and size/strain analysis. Mater. Sci. Forum 228, 183 1996CrossRefGoogle Scholar
20Larson, A.C.Von Dreele, R.B.: General Structure Analysis System (GSAS), Report LAUR 86-748 Los Alamos National Laboratory Los Alamos, NM 2004Google Scholar
21Gutmann, V.: Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta 21, 661 1976CrossRefGoogle Scholar
22Johnston, D.C., Prakash, H., Zachariasen, W.H.Viswanathan, R.: High temperature superconductivity in Li-Ti-O ternary system. Mater. Res. Bull. 8, 777 1973CrossRefGoogle Scholar
23Kartha, J.P., Tunstall, D.P.Irvine, J.T.S.: An NMR investigation of Li occupancy of different sites in the oxide suoerconductor LiTi2O4 and related compounds. J. Solid State Chem. 152, 397 2000CrossRefGoogle Scholar
24Cava, R.J., Murphy, D.W., Zahurak, S., Santoro, A.Roth, R.S.: The crystal structures of the Li inserted metal oxides Li0.5TiO2 (anatase), LiTi2O4 spinel and Li2Ti2O4. J. Solid State Chem. 53, 64 1984CrossRefGoogle Scholar
25Lide, D.R., ed. CRC Handbook of Chemistry and Physics 77th ed.CRC Press Boca Raton, FL 1999 98Google Scholar