Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-28T05:33:52.688Z Has data issue: false hasContentIssue false

Single crystal electron paramagnetic resonance study of Y2BaCuO5, a common impurity in the high temperature superconductor, YBa2Cu3O7

Published online by Cambridge University Press:  31 January 2011

R.J. Barham
Affiliation:
Department of Chemistry and Materials Research Center, The State University of New York at Binghamton, Binghamton, New York 13902-6000
D.C. Doetschman
Affiliation:
Department of Chemistry and Materials Research Center, The State University of New York at Binghamton, Binghamton, New York 13902-6000
Get access

Abstract

Electron paramagnetic resonance (EPR) studies of pure Y2BaCuO5 in powder and single crystal forms and of YBa2Cu3O7−δ in powder and single crystal forms provide further evidence that it is Y2BaCuO5 that is the common green impurity found in many preparations of YBa2Cu3O7−δ as a powder or in pellet forms. Y2BaCuO5 tends to be excluded in the growth of YBa2Cu3O7−δ single crystals. A method is presented for the growth of Y2BaCuO5 crystals from a flux. An apparent discrepancy between the observed single crystal EPR anisotropy and the reported crystal structure is resolved in three independent ways from the Y2BaCuO5 Powder and single crystal EPR data. These results show that the EPR spectrum is a superposition of the spectra of the two differently oriented Cu sites in the unit cell and is not a spectral average of them. The temperature independence of the EPR spectrum between 150 K and 300 K is also consistent with there being no temperature dependent exchange averaging of the EPR spectra of the two sites in this range. The orientations of the Cu crystal field axes, as indicated by the g axes, are in agreement with the crystal structure. Crystal field splittings of the Cu d-orbitals are estimated from the measured g values and indicate an appreciable covalency in the Cu–O bonds. The linewidth and its anisotropy indicate a minor degree of exchange narrowing.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Castilho, J.H., Venegas, P. A., Barberis, G.E., Rettori, C., Jardim, R.F., Gama, S., Davidov, D., and Felner, I., Solid State Commun. 64, 1043 (1987).CrossRefGoogle Scholar
2.Benakki, S., Christoffel, E., Goltzene, A., Meyer, B., Schwab, C., Besnus, M.J., Meyer, A., Vilminot, S., and Drillon, M., J. Mater. Res. 2, 765 (1987).CrossRefGoogle Scholar
3.Bowden, G.J., Elliston, P.R., Wan, K.T., Dou, S.X., Easterling, K.E., Bourdillon, A., Sorrel, C. C., Cornell, B. A., and Separovic, F., J. Phys. C Solid State Phys. 20, L545 (1987).CrossRefGoogle Scholar
4.Shaltiel, D., Genossar, J., Grayevsky, A., Kalman, Z. M., Fisher, B., and Kaplan, N., Solid State Commun. 63, 987 (1987).CrossRefGoogle Scholar
5.Rettori, C., Davidov, D., Belaish, I., and Felner, I., Phys. Rev. B 36, 4028 (1987).CrossRefGoogle Scholar
6.Oseroff, S.B., Vier, D.C., Smyth, J.F., Sailing, C.T., Schultz, S., Dalichaouch, Y., Lee, B. W., Maple, M. B., Fisk, Z., Thompson, J. D., Smith, J. L., and Zirngiebl, E., Solid State Commun. 64, 241 (1987).CrossRefGoogle Scholar
7.Shrivastava, K. N., J. Phys. C: Solid State Phys. 20, L789 (1987).CrossRefGoogle Scholar
8.Shrivastava, K.N., Phys. Rep. 200, 51 (1991).CrossRefGoogle Scholar
9.Stankowski, J., Kahol, P. K., Dalai, N. S., and Moodera, J. S., Phys. Rev. B 36, 7126 (1987).CrossRefGoogle Scholar
10.Murphy, D.W., Sunshine, S.A., Gallagher, P.K., O'Bryan, H.M., Cava, R. J., Batlogg, B., van Dover, R. B., Schneemeyer, L. F., and Zahurak, S. M., in Chemistry of High-Temperature Superconductors, edited by Nelson, D., Whittingham, M.S., and George, T., ACS Symposium Series 351 (American Chemical Society, Washington, DC, 1987), Chap. 18.Google Scholar
11.Cava, R.J., Batlogg, B., van Dover, R.B., Murphy, D.W., Sunshine, S., Siegrist, T., Remeika, J. P., Rietman, E. A., Zahurak, S., and Espinosa, G.P., Phys. Rev. Lett. 58, 1676 (1987).CrossRefGoogle Scholar
12.Mehran, F., Barnes, S.E., McQuire, T.R., Dinger, T.R., and Holtzberg, F., Solid State Commun. 66, 299 (1988).CrossRefGoogle Scholar
13.Albino, J.de Aguiar, O., Menovsky, A. A., van den Berg, J., and Brom, H., J. Phys. C21, L237 (1988).Google Scholar
14.Karim, R., Seed, R., How, H., Widom, A., Vittoria, C., Balestrino, G., and Parali, P., J. Appl. Phys. 67, 5064 (1990).CrossRefGoogle Scholar
15.Mehran, F., Barnes, S.E., Geiss, E.A., and McGuire, T.R., Solid State Commun. 67, 55(1988).CrossRefGoogle Scholar
16.Vier, D.C., Oseroff, S.B., Sailing, C.T., Smyth, J.F., Schultz, S., Dalichaouch, Y., Lee, B. W., and Maple, M. B., Phys. Rev. B 36, 8888 (1987).CrossRefGoogle Scholar
17.Ong, E. W., Ramakrishna, B. L., and Iqbal, Z., Solid State Commun. 66, 171 (1988).CrossRefGoogle Scholar
18.McKinnon, W. R., Morton, J. R., Preston, K. F., and Selwyn, L. W., Solid State Commun. 65, 855 (1988).CrossRefGoogle Scholar
19.Owens, F. J., Ramakrishna, B. L., and Iqbal, Z., Physica C156, 221 (1988).CrossRefGoogle Scholar
20.Jones, R., Ashby, M.F., Campbell, A.M., Edwards, P.P., Harrison, M.R., Hibbs, A.D., Jefferson, D.A., Kirkland, A.I., Thanyasir, T., and Sinn, E., in Chemistry of High-Temperature Superconductors, edited by Nelson, D., Whittingham, M.S., and George, T., ACS Symposium Series 351 (American Chemical Society, Washington, DC, 1987), Chap. 29.Google Scholar
21.Yu, J-T., Hwang, J.G., Tsai, C-C., and Lii, K.H., Solid State Commun. 70, 167 (1989).CrossRefGoogle Scholar
22.De, D.K., J. Phys. C: Solid State Phys. 21, 4481 (1988).CrossRefGoogle Scholar
23.Michel, C. and Raveau, B., J. Solid State Chem. 43, 72 (1982).CrossRefGoogle Scholar
24.Hazen, R.M., Finger, L.W., Angel, R.J., Prewitt, C.T., Ross, N.L., Mao, H.K., Hadidiacos, C.G., Hor, P.H., Meng, R.L., and Chu, C.W., Phys. Rev. B 35, 7238 (1987).CrossRefGoogle Scholar
25.Kojima, K., Ohbayashi, K., Udagawa, M., and Hihara, T., Jpn. J. Appl. Phys. 26, L766 (1987).CrossRefGoogle Scholar
26.Kobayashi, T., Katsuda, H., Hayashi, K., Tokumoto, M., and Ihara, H., Jpn. J. Appl. Phys. 27, L670 (1988).CrossRefGoogle Scholar
27.Guo, Y., Langlois, J-M., and Goddard, W. A.III, Science 239, 896 (1988).Google Scholar
28.Levitin, R. Z., Mill, B. V., Moschalkov, V. V., Samarin, N. A., Snegirev, V. V., and Zoubkova, J., J. Magn. Mater. 90–91, 536 (1990).CrossRefGoogle Scholar
29.Moschalkov, V.V., Samarin, N.A., Grischenko, I.O., Mill, B.V., and Zoubkova, J., Solid State Commun. 78, 879 (1991).CrossRefGoogle Scholar
30.Katayama-Yoshida, H., Okabe, Y., Takahashi, T., Sasaki, T., Hirooka, T., Suzuki, T., Ciszek, T., and Deb, S. K., Jpn. J. Appl. Phys. 26, L2007 (1987).CrossRefGoogle Scholar
31.Suzuki, M., Kardiawarman, J., Sampere, S., and Burr, C. R., Phys. Rev. B 37, 5775 (1988).CrossRefGoogle Scholar
32.Takei, H., Takeya, H., lye, Y., Tamegai, T., and Sakai, F., Jpn. J. Appl. Phys. 26, L1425 (1987).CrossRefGoogle Scholar
33.Scheel, H.J. and Licci, F., J. Cryst. Growth 85, 607 (1987).CrossRefGoogle Scholar
34.Scheel, H. J. and Licci, F., in High-Temperature Superconductors, edited by M.B., Brodsky, R.C., Dynes, K., Kitazawa, and H.L., Tuller (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 595.Google Scholar
35.Doetschman, D.C., Dwyer, D.W., and Trojan, K., Chem. Phys. 129, 285 (1989).CrossRefGoogle Scholar
36.Das, U., Doetschman, D.C., Dwyer, D. W., and Mustafl, D., Chem. Phys. 143, 253 (1990).CrossRefGoogle Scholar
37.Arley, N. and Buch, K. R., Introduction to the Theory of Probability and Statistics (Wiley, New York, 1950).Google Scholar
38.Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970).Google Scholar