Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-22T20:34:39.089Z Has data issue: false hasContentIssue false

Shear and shuffle in $\left\{ {{\bf 11}\bar {\bf2}{\bf 2}} \right\}\left\langle {{\bf11}\bar {\bf 2}\bar {\bf 3}} \right\rangle$ twinning in titanium

Published online by Cambridge University Press:  22 December 2015

Bin Li*
Department of Chemical and Materials Engineering, University of Nevada, Reno, Nevada 89557, USA
a)Address all correspondence to this author. e-mail:
Get access


In classical twinning theory, the K2 plane of $\left\{ {11\bar 22} \right\}\left\langle {11\bar 2\bar 3} \right\rangle$ twinning mode was predicted to be $\left\{ {11\bar 2\bar 4} \right\}$, with a twinning shear of ∼0.22 which was experimentally “confirmed”. However, these twinning elements cannot be reproduced or verified in atomistic simulations. The K2 plane in the simulations is always (0001), but this K2 plane would lead to a nominal twining shear of 1.26 which is unrealistically large. In this work, atomistic simulations were performed to investigate the migration of $\left\{ {11\bar 22} \right\}$ twin boundary in titanium (Ti). Shear and atomic shuffles for three different, reported K2 planes were analyzed in great detail, for the first time. The analyses show that ${K_2} = \{ 11\bar 2\bar 4\}$ leads to very complex shuffles despite the small twinning shear and is unfavorable. If ${K_2} = \{ 11\bar 2\bar 2\}$, only half of the parent atoms are involved in the shuffling, but the twinning shear is very large (0.96) and is also unfavorable. When K2 = (0001), the parent atoms are carried to twin positions partly by shear and partly by a simple shuffle. Because shuffling makes no contribution to the twinning shear, the actual twinning shear is 0.66, instead of 1.26. Thus, K2 = (0001) is the most favorable and the conflict between the simulation results and the classical twinning theory can be reconciled.

Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Contributing Editor: Susan B. Sinnott



Reed-Hill, B.E. and Buchanan, E.R.: Zig-zag twins in zirconium. Acta Metall. 11, 7375 (1963). doi: 10.1016/0001-6160(63)90133-0.Google Scholar
Reed-Hill, R.E. and Robertson, W.D.: Additional modes of deformation twinning in magnesium. Acta Metall. 5, 717727 (1957). doi: 10.1016/0001-6160(57)90074-3.Google Scholar
Westlake, D.G.: Twinning in zirconium. Acta Metall. 9, 327331 (1961). doi: 10.1016/0001-6160(61)90226-7.Google Scholar
Wonsiewicz, B.C. and Backofen, W.A.: Plasticity of magnesium crystals. Trans. Metall. Soc. AIME 239, 14221431 (1967).Google Scholar
Kelley, E.W. and Hosford, W.F. Jr.: The deformation characteristics of textured magnesium. Trans. Metall. Soc. AIME 242, 654661 (1968).Google Scholar
Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1157 (1995). doi: 10.1016/0079-6425(94)00007-7.Google Scholar
Thompson, N. and Millard, D.J.: XXXVIII. Twin formation, in cadmium. Philos. Mag. Ser 7(43), 422440 (1952). doi: 10.1080/14786440408520175.Google Scholar
Nabarro, F.R.N. ed.: Dislocations in Solids: Dislocations in Crystals, Vol. 2 (North-Holland Publishing Co, Amsterdam, 1979).Google Scholar
Mendelson, S.: Zonal dislocations and twin lamellae in h.c.p. metals. Mater. Sci. Eng. 4, 231242 (1969). doi: 10.1016/0025-5416(69)90067-6.CrossRefGoogle Scholar
Li, B. and Ma, E.: Zonal dislocations mediating twinning in magnesium. Acta Mater. 57, 17341743 (2009). doi: 10.1016/j.actamat.2008.12.016.Google Scholar
Li, B., Cao, B.Y., Ramesh, K.T., and Ma, E.: A nucleation mechanism of deformation twins in pure aluminum. Acta Mater. 57, 45004507 (2009). doi: 10.1016/j.actamat.2009.06.014.CrossRefGoogle Scholar
Mahajan, S. and Chin, G.Y.: Formation of deformation twins in f.c.c. crystals. Acta Metall. 21, 13531363 (1973). doi: 10.1016/0001-6160(73)90085-0.CrossRefGoogle Scholar
Bilby, B.A. and Crocker, A.G.: The theory of the crystallography of deformation twinning. Proc. R. Soc. London, Ser. A 288, 240255 (1965). doi: 10.1098/rspa.1965.0216.Google Scholar
Rapperport, E.J.: Room temperature deformation processes in zirconium. Acta Metall. 7, 254260 (1959). doi: 10.1016/0001-6160(59)90018-5.Google Scholar
Paton, N.E. and Backofen, W.A.: Plastic deformation of titanium at elevated temperatures. Metall. Trans. 1, 28392847 (1970).Google Scholar
Xu, F., Zhang, X., Ni, H., and Liu, Q.: Deformation twinning in pure Ti during dynamic plastic deformation. Mater. Sci. Eng., A 541, 190195 (2012). doi: 10.1016/j.msea.2012.02.021.Google Scholar
Mason, T.A., Bingert, J.F., Kaschner, G.C., Wright, S.I., and Larsen, R.J.: Advances in deformation twin characterization using electron backscattered diffraction data. Metall. Mater. Trans. A 33, 949954 (2002). doi: 10.1007/s11661-002-1027-z.Google Scholar
Serra, A. and Bacon, D.J.: Modelling the motion of {1122} twinning dislocations in the hcp metals. Mater. Sci. Eng., A 400401, 496498 (2005). doi: 10.1016/j.msea.2005.01.067.Google Scholar
Li, B., El Kadiri, H., and Horstemeyer, M.F.: Extended zonal dislocations mediating twinning in titanium. Philos. Mag. 92, 10061022 (2012). doi: 10.1080/14786435.2011.637985.Google Scholar
Daw, M.S. and Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 12851288 (1983). doi: 10.1103/PhysRevLett.50.1285.Google Scholar
Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 64436453 (1984). doi: 10.1103/PhysRevB.29.6443.Google Scholar
Zope, R.R. and Mishin, Y.: Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B 68, 024102 (2003). doi: 10.1103/PhysRevB.68.024102.Google Scholar
Niewczas, M.: Lattice correspondence during twinning in hexagonal close-packed crystals. Acta Mater. 58, 58485857 (2010). doi: 10.1016/j.actamat.2010.06.059.Google Scholar
Hall, E.O.: Twinning and Diffusionless Transformations in Metals (Butterworth, London, 1954).Google Scholar
Mendelson, S.: Dislocation dissociations in hcp metals. J. Appl. Phys. 41, 18931910 (1970). doi: 10.1063/1.1659139.CrossRefGoogle Scholar
Kronberg, M.L.: Plastic deformation of single crystals of sapphire: Basal slip and twinning. Acta Metall. 5, 507524 (1957). doi: 10.1016/0001-6160(57)90090-1.Google Scholar
Yu, Q., Shan, Z-W., Li, J., Huang, X., Xiao, L., Sun, J., and Ma, E.: Strong crystal size effect on deformation twinning. Nature 463, 335338 (2010). doi: 10.1038/nature08692.CrossRefGoogle ScholarPubMed
Abbaschian, R., Abbaschian, L., and Reed-Hill, R.E.: Physical Metallurgy Principles, 4th ed. (Cengage Learning: India, 2008).Google Scholar