Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-12T02:39:19.007Z Has data issue: false hasContentIssue false

The selective area deposition of diamond films

Published online by Cambridge University Press:  31 January 2011

P. G. Roberts
Affiliation:
Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
D. K. Milne
Affiliation:
Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
P. John
Affiliation:
Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
M. G. Jubber
Affiliation:
Department of Physics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
J. I. B. Wilson
Affiliation:
Department of Physics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
Get access

Abstract

Diamond films were selectively nucleated and grown on single crystal (100) silicon by microwave plasma assisted chemical vapor deposition with submicron spatial resolution. A thermal silicon dioxide layer on the wafers was patterned by standard photolithography. Nucleation was performed by applying a dc bias of −250 to −350 V in a hydrogen-methane plasma. Lifting off the oxide layer by HF etching prior to growth delineated the nucleation pattern which was replicated by the diamond film after growth. The growth of polycrystalline diamond was performed in a hydrogen-carbon monoxide-methane mixture selected to facilitate (100) texturing. Individual faceted crystallites were grown on a square matrix of sites, with a pitch of 3 μm, by controlling the nucleation densities within the windows exposing the prenucleated silicon. However, the orientation of the crystallites was randomly aligned with respect to the (100) silicon lattice within the micron scale windows employed in this study.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Collins, A. T. and Lightowlers, E. C., in The Properties of Diamond, edited by Field, J. E. (Academic Press, London, 1979).Google Scholar
2.Jiang, X. and Klages, C-P., Diamond and Related Mater. 2, 1112 (1993).CrossRefGoogle Scholar
3.Wolter, S. D., Stoner, B. R., Glass, J.T., Ellis, P. J., Buhaenko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
4.Kohl, R., Wild, C., Herres, N., Koidl, P., Stoner, B. R., and Glass, J. T., Appl. Phys. Lett. 63, 1792 (1993).CrossRefGoogle Scholar
5.John, P., Milne, D. K., Roberts, P. G., Jubber, M. G., Liehr, M., and Wilson, J. I. B., J. Mater. Res. 9, 3083 (1994).CrossRefGoogle Scholar
6.Fox, B. A., Holmes, J.S., Tessmer, A. J., Kao, C-T., Malta, D. M., Plano, L. S., Tessmer, G. J., Stoner, B. R., and Dreifus, D. L., Proc. Diamond Films '94, Tuscany, Italy, 1994.Google Scholar
7.Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
8.Geis, W. W., Smith, H. I., Argoitia, A., Angus, J., Ma, G-H., Glass, J.T., Butler, J.N., Robinson, C. J., and Pryor, R., Appl. Phys. Lett. 58, 2485 (1991).CrossRefGoogle Scholar
9.Zhu, W., Wang, X.H., Stoner, B.R., Ma, G.H.M., Kong, H.S., Braun, M. W. H., and Glass, J. T., Phys. Rev. B 47, 6529 (1993).CrossRefGoogle Scholar
10.Hirabayashi, K., Taniguchi, T., Takamatsu, O., Ikoma, T., and Iwasaki-Kurihara, N., Appl. Phys. Lett. 53, 1815 (1988);CrossRefGoogle Scholar
Ma, J-S., Kawarada, H., Yonehara, T., Suzuki, J., Wei, J., Yokota, Y., and Hiraki, A., Appl. Phys. Lett. 55, 1071 (1989);CrossRefGoogle Scholar
Inoue, T., Tachibana, H., Kumagi, K., Miyata, K., Nishimura, K., Kobashi, K., and Nakane, A., J. Appl. Phys. 67, 7329 (1990);CrossRefGoogle Scholar
Kobashi, K., Inoue, T., Tachibana, H., Kumagi, K., Miyata, K., Nishimura, K., and Nakaue, A., Vacuum 41, 1383 (1990);CrossRefGoogle Scholar
DeNatale, J. F., Flintoff, J.F., and Harker, A. B., J. Appl. Phys. 68, 4014 (1990);CrossRefGoogle Scholar
Ramesham, R., Roppel, T., Ellis, C., Jawarske, D. A., and Baugh, W., J. Mater. Res. 6, 1278 (1991);CrossRefGoogle Scholar
Lin, S. J., Lee, S. L., Hwang, H., Chang, C. S., and Wen, H. Y., Appl. Phys. Lett. 60, 1559 (1991);CrossRefGoogle Scholar
Miyauchi, S., Kumagai, K., Miyata, K., Nishimura, K., Kobashi, K., Nakaue, A., Glass, J. T., and Buckley-Golder, I. M., Surf. Coatings Technol. 47, 465 (1991).CrossRefGoogle Scholar
11.Ma, J-S., Kawarada, H., Yonehara, T., Suzuki, J-I., Wei, J., Yokota, Y., Mori, H., Fujita, H., and Hiraki, A., Appl. Surf. Sci. 41/42, 572 (1989);Google Scholar
Ma, J-S., Yagyu, H., Hiraki, A., Kawarada, H., and Yonehara, T., Thin Solid Films 206, 192 (1991).CrossRefGoogle Scholar
12.Katsumata, S. and Yugo, S., Diamond and Related Materials 2, 1490 (1993).CrossRefGoogle Scholar
13.Jubber, M. G., Wilson, J.I.B., Drummond, I. C., John, P., and Milne, D. K., Vacuum 45, 499 (1994).CrossRefGoogle Scholar
14.John, P., Milne, D. K., Vijayarajah, W. C., Jubber, M. G., and Wilson, J. I. B., Diamond and Related Materials 3, 388 (1994).CrossRefGoogle Scholar
15.Milne, D. K., Roberts, P. G., John, P., Jubber, M. G., Liehr, M., and Wilson, J.I.B., Diamond and Related Materials 4, 394 (1995).CrossRefGoogle Scholar
16.Jiang, X., Boettger, E., Paul, M., and Klages, C-P., Appl. Phys. Lett. 65, 1519 (1994).CrossRefGoogle Scholar