Hostname: page-component-5d59c44645-zlj4b Total loading time: 0 Render date: 2024-02-22T05:45:16.184Z Has data issue: false hasContentIssue false

Role of grain boundaries in the epitaxial realignment of undoped and As-doped polycrystalline silicon films

Published online by Cambridge University Press:  03 March 2011

C. Spinella
Affiliation:
Istituto di Metodologie e Tecnologie per la Microelettronica, CNR, Corso Italia 57, 195129 Catania, Italy
F. Benyaïch
Affiliation:
Dipartimento di Fisica, Universita di Catania, Corso Italia 57, 1 95129 Catania, Italy
A. Cacciato
Affiliation:
Istituto di Metodologie e Tecnologie per la Microelettronica, CNR, Corso Italia 57, 1 95129 Catania, Italy
E. Rimini
Affiliation:
Dipartimento di Fisica, Universita di Catania, Corso Italia 57, I 95129 Catania, Italy
G. Fallico
Affiliation:
SGS-Thomson, Stradale Primosole 50, I 95100 Catania, Italy
P. Ward
Affiliation:
SGS-Thomson, Stradale Primosole 50, I 95100 Catania, Italy
Get access

Abstract

The early stages of the thermally induced epitaxial realignment of undoped and As-doped polycrystalline Si films deposited onto crystalline Si substrates were monitored by transmission electron microscopy. Under the effect of the heat treatment, the native oxide film at the poly-Si/c-Si interface begins to agglomerate into spherical beads. The grain boundary terminations at the interface are the preferred sites for the triggering of the realignment transformation which starts by the formation of epitaxial protuberances at these sites. This feature, in conjunction with the microstructure of the films during the first instants of the heat treatment, explains the occurrence of two different realignment modes. In undoped films the epitaxial protuberances, due to the fine grain structure, are closely distributed and grow together forming a rough interface moving toward the film's surface. For As-doped films, the larger grain size leaves a reduced density of realignment sites. Due to As doping some of these sites grow fast and form epitaxial columns that further grow laterally at the expense of the surrounding polycrystalline grains.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bravman, J. C., Patton, J. L., and Plummer, J. D., J. Appl. Phys. 57, 2779 (1985).Google Scholar
2Ajuria, S. and Reif, R., J. Appl. Phys. 69, 662 (1991).Google Scholar
3Wolstenholme, G. R., Jorgensen, N., Ashburn, P., and Booker, R., J. Appl. Phys. 62, 225 (1987).Google Scholar
4Delfino, M., Groot, J. L., Ritz, K. N., and Maillot, P., J. Electrochem. Soc. 136, 215 (1989).Google Scholar
5Tsaur, B. J. and Hung, L. S., Appl. Phys. Lett. 37, 648 (1980).Google Scholar
6Hoyt, J. L., Gibbons, J. F., and Pease, R. F., Appl. Phys. Lett. 50, 751 (1987).Google Scholar
7Benyaich, F., Priolo, F., Rimini, E., Spinella, C., Baroetto, F., Cannavo, S., and Ward, P., Semicond. Sci. Technol. 6, 850 (1991).Google Scholar
8Benyaich, F., Priolo, F., Rimini, E., Spinella, C., and Ward, P., Appl. Phys. Lett. 59, 2507 (1991).Google Scholar
9Benyaich, F., Priolo, F., Rimini, E., Spinella, C., and Ward, P., J. Appl. Phys. 71, 638 (1992).Google Scholar
10Kim, H. J. and Thompson, C. V., Appl. Phys. Lett. 48, 399 (1986).Google Scholar
11Kim, H. J. and Thompson, C. V., J. Electrochem. Soc. 125, 2312 (1978).Google Scholar
12Kamins, T. I., Mandurah, M., and Saraswat, K. C., J. Electrochem. Soc. 125, 927 (1978).Google Scholar
13Benyaich, F., Spinella, C., Priolo, F., Rimini, E., and Ward, P., Mater. Chem. Phys. 32, 99 (1992).Google Scholar
14Fraust, J. W. and Wiffin, P., Solid-State Electron. 7, 183 (1964).Google Scholar
15Csepregi, L., Mayer, J. W., and Sigmon, T., Appl. Phys. Lett. 29, 92 (1976).Google Scholar
16Dorsd, R. and Washburn, J., J. Appl. Phys. 53, 397 (1982).Google Scholar