Skip to main content Accessibility help
×
Home
Hostname: page-component-66d7dfc8f5-cdn8t Total loading time: 1.44 Render date: 2023-02-08T12:03:34.570Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

A review of graphene synthesis by indirect and direct deposition methods

Published online by Cambridge University Press:  14 January 2020

Yanxia Wu
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
Shengxi Wang
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
Kyriakos Komvopoulos*
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
*
a)Address all correspondence to this author. e-mail: kyriakos@me.berkeley.edu
Get access

Abstract

The unique properties of graphene have led to the use of this allotrope of carbon in a wide range of applications, including semiconductors, energy devices, diffusion barriers, heat spreaders, and protective overcoats. The synthesis of graphene by process methods that either directly or indirectly rely on physical vapor deposition, thermal annealing, laser irradiation, and ion/electron beam irradiation has drawn significant attention in recent years, mainly because they can provide high purity, low temperature, high throughput, and controllable growth of graphene on various substrates. This article provides a comprehensive assessment of these methods by grouping them into two main categories, i.e., indirect methods in which a carbon layer is first deposited on a substrate and then converted to graphene by some type of energetic post-treatment process and direct methods in which graphene is directly synthesized on a substrate surface by a process that uses a solid carbon source. The underlying growth mechanisms of these processes and the challenging issues that need to be overcome before further advances in graphene synthesis can occur are interpreted in the context of published results.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Permanent address: Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Choi, W., Lahiri, I., Seelaboyina, R., and Kang, Y.S.: Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 35, 52 (2010).10.1080/10408430903505036CrossRefGoogle Scholar
Edwards, R.S. and Coleman, K.S.: Graphene synthesis: Relationship to applications. Nanoscale 5, 38 (2013).10.1039/C2NR32629ACrossRefGoogle ScholarPubMed
Mak, K.F., Shan, J., and Heinz, T.F.: Electronic structure of few-layer graphene: Experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2010).10.1103/PhysRevLett.104.176404CrossRefGoogle ScholarPubMed
Miao, F., Wijeratne, S., Zhang, Y., Coskun, U.C., Bao, W., and Lau, C.N.: Phase-coherent transport in graphene quantum billiards. Science 317, 1530 (2007).10.1126/science.1144359CrossRefGoogle ScholarPubMed
Adam, S., Hwang, E.H., Rossi, E., and Das Sarma, S.: Theory of charged impurity scattering in two dimensional graphene. Solid State Commun. 149, 1072 (2009).10.1016/j.ssc.2009.02.041CrossRefGoogle Scholar
Skulason, H.S., Gaskell, P.E., and Szkopek, T.: Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers. Nanotechnology 21, 295709 (2010).10.1088/0957-4484/21/29/295709CrossRefGoogle ScholarPubMed
Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., and McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458 (2008).10.1021/nl801457bCrossRefGoogle ScholarPubMed
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).10.1021/nl0731872CrossRefGoogle ScholarPubMed
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008).10.1016/j.ssc.2008.02.024CrossRefGoogle Scholar
Wang, Y., Huang, Y., Song, Y., Zhang, X., Ma, Y., Liang, J., and Chen, Y.: Room-temperature ferromagnetism of graphene. Nano Lett. 9, 220 (2009).CrossRefGoogle ScholarPubMed
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010).10.1002/adma.201001068CrossRefGoogle ScholarPubMed
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).10.1126/science.1157996CrossRefGoogle ScholarPubMed
Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., and Lau, C.N.: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).10.1063/1.2907977CrossRefGoogle Scholar
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).10.1126/science.1156965CrossRefGoogle ScholarPubMed
Stoller, M.D., Park, S., Zhu, Y., An, J., and Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498 (2008).10.1021/nl802558yCrossRefGoogle ScholarPubMed
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., and Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007).10.1038/nmat1967CrossRefGoogle Scholar
Liu, L., Ryu, S., Tomasik, M.R., Stolyarova, E., Jung, N., Hybertsen, M.S., Steigerwald, M.L., Brus, L.E., and Flynn, G.W.: Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965 (2008).10.1021/nl0808684CrossRefGoogle ScholarPubMed
Berry, V.: Impermeability of graphene and its applications. Carbon 62, 1 (2013).10.1016/j.carbon.2013.05.052CrossRefGoogle Scholar
Yuan, W., Chen, J., and Shi, G.: Nanoporous graphene materials. Mater. Today 17, 77 (2014).10.1016/j.mattod.2014.01.021CrossRefGoogle Scholar
Lang, B.: A LEED study of the deposition of carbon on platinum crystal surfaces. Surf. Sci. 53, 317 (1975).10.1016/0039-6028(75)90132-6CrossRefGoogle Scholar
Rokuta, E., Hasegawa, Y., Itoh, A., Yamashita, K., Tanaka, T., Otani, S., and Oshima, C.: Vibrational spectra of the monolayer films of hexagonal boron nitride and graphite on faceted Ni(755). Surf. Sci. 427–428, 97 (1999).10.1016/S0039-6028(99)00241-1CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).10.1126/science.1102896CrossRefGoogle ScholarPubMed
Shioyama, H.: Cleavage of graphite to graphene. J. Mater. Sci. Lett. 20, 499 (2001).10.1023/A:1010907928709CrossRefGoogle Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).10.1073/pnas.0502848102CrossRefGoogle ScholarPubMed
Moldt, T., Eckmann, A., Klar, P., Morozov, S.V., Zhukov, A.A., Novoselov, K.S., and Casiraghi, C.: High-yield production and transfer of graphene flakes obtained by anodic bonding. ACS Nano 5, 7700 (2011).10.1021/nn202293fCrossRefGoogle ScholarPubMed
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).10.1016/j.carbon.2007.02.034CrossRefGoogle Scholar
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y., Boland, J., Niraj, P., Deusberg, G., Krishnamurti, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., and Coleman, J.N.: High yield production of graphene by liquid phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).10.1038/nnano.2008.215CrossRefGoogle ScholarPubMed
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009).10.1021/nl801827vCrossRefGoogle ScholarPubMed
Wu, Y.Q., Ye, P.D., Capano, M.A., Xuan, Y., Sui, Y., Qi, M., Cooper, J.A., Shen, T., Pandey, D., Prakash, G., and Reifenberger, R.: Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl. Phys. Lett. 92, 092102 (2008).10.1063/1.2889959CrossRefGoogle Scholar
Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., Bipasha, F.A., and Hossain, S.S.: Synthesis of graphene. Int. Nano Lett. 6, 65 (2016).10.1007/s40089-015-0176-1CrossRefGoogle Scholar
Vishwakarma, R., Rosmi, M.S., Takahashi, K., Wakamatsu, Y., Yaakob, Y., Araby, M.I., Kalita, G., Kitazawa, M., and Tanemura, M.: Transfer free graphene growth on SiO2 substrate at 250 °C. Sci. Rep. 7, 43756 (2017).10.1038/srep43756CrossRefGoogle ScholarPubMed
Zheng, M., Takei, K., Hsia, B., Fang, H., Zhang, X., Ferralis, N., Ko, H., Chueh, Y-L., Zhang, Y., Maboudian, R., and Javey, A.: Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett. 96, 063110 (2010).10.1063/1.3318263CrossRefGoogle Scholar
Peng, J., Chen, N., He, R., Wang, Z., Dai, S., and Jin, X.: Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method. Angew. Chem. 129, 1777 (2017).10.1002/ange.201609565CrossRefGoogle Scholar
Rodríguez-Manzo, J.A., Pham-Huu, C., and Banhart, F.: Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano 5, 1529 (2011).CrossRefGoogle ScholarPubMed
Amaratunga, G.A.J., Chhowalla, M., Kiely, C.J., Alexandrou, I., Aharonov, R., and Devenish, R.M.: Hard elastic carbon thin films from linking of carbon nanoparticles. Nature 383, 321 (1996).CrossRefGoogle Scholar
Narula, U., Tan, C.M., and Lai, C.S.: Growth mechanism for low temperature PVD graphene synthesis on copper using amorphous carbon. Sci. Rep. 7, 44112 (2017).CrossRefGoogle ScholarPubMed
Zhang, H. and Feng, P.X.: Fabrication and characterization of few-layer graphene. Carbon 48, 359 (2010).CrossRefGoogle Scholar
Maddi, C., Bourquard, F., Barnier, V., Avila, J., Asensio, M-C., Tite, T., Donnet, C., and Garrelie, F.: Nano-architecture of nitrogen-doped graphene films synthesized from a solid CN source. Sci. Rep. 8, 3247 (2018).CrossRefGoogle ScholarPubMed
Kesarwani, A.K., Panwar, O.S., Dhakate, S.R., Singh, V.N., Rakshit, R.K., Bisht, A., and Kumar, A.: Determining the number of layers in graphene films synthesized by filtered cathodic vacuum arc technique. Fuller. Nanotub. Car. Nanostruct. 24, 725 (2016).CrossRefGoogle Scholar
Xiong, W., Zhou, Y.S., Jiang, L.J., Sarkar, A., Mahjouri-Samani, M., Xie, Z.Q., Gao, Y., Ianno, N.J., Jiang, L., and Lu, Y.F.: Single-step formation of graphene on dielectric surfaces. Adv. Mater. 25, 630 (2013).10.1002/adma.201202840CrossRefGoogle ScholarPubMed
Wintterlin, J. and Bocquet, M-L.: Graphene on metal surfaces. Surf. Sci. 603, 1841 (2009).CrossRefGoogle Scholar
Oshima, C. and Nagashima, A.: Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys.: Condens. Matter 9, 1 (1997).Google Scholar
Cabrero-Vilatela, A., Weatherup, R.S., Braeuninger-Weimer, P., Caneva, S., and Hofmann, S.: Towards a general growth model for graphene CVD on transition metal catalysts. Nanoscale 8, 2149 (2016).CrossRefGoogle ScholarPubMed
Koh, A.T.T., Foong, Y.M., and Chua, D.H.C.: Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition. Diam. Relat. Mater. 25, 98 (2012).CrossRefGoogle Scholar
Fujita, J-i., Ueki, R., Miyazawa, Y., and Ichihashi, T.: Graphitization at interface between amorphous carbon and liquid gallium for fabricating large area graphene sheets. J. Vac. Sci. Technol. B 27, 3063 (2009).CrossRefGoogle Scholar
Schneider, J.J.: Transforming amorphous into crystalline carbon: Observing how graphene grows. ChemCatChem 3, 1119 (2011).CrossRefGoogle Scholar
Mattevi, C., Kim, H., and Chhowalla, M.: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324 (2011).CrossRefGoogle Scholar
Okamoto, H., Schlesinger, M.E., and Mueller, E.M. (eds): ASM Handbook, Alloy Phase Diagrams, Vol. 3 (ASM International, Materials Park, OH, 2016); pp. 110131.CrossRefGoogle Scholar
López, G.A. and Mittemeijer, E.J.: The solubility of C in solid Cu. Scr. Mater. 51, 1 (2004).10.1016/j.scriptamat.2004.03.028CrossRefGoogle Scholar
Baraton, L., He, Z.B., Lee, C.S., Cojocaru, C.S., Châtelet, M., Maurice, J-L., Lee, Y.H., and Pribat, D.: On the mechanisms of precipitation of graphene on nickel thin films. Europhys. Lett. 96, 46003 (2011).CrossRefGoogle Scholar
Derbyshire, F.J., Presland, A.E.B., and Trimm, D.L.: Graphite formation by the dissolution-precipitation of carbon in cobalt, nickel and iron. Carbon 13, 111 (1975).10.1016/0008-6223(75)90267-5CrossRefGoogle Scholar
Ji, H., Hao, Y., Ren, Y., Charlton, M., Lee, W.H., Wu, Q., Li, H., Zhu, Y., Wu, Y., Piner, R., and Ruoff, R.S.: Graphene growth using a solid carbon feedstock and hydrogen. ACS Nano 5, 7656 (2011).CrossRefGoogle ScholarPubMed
Sinclair, R., Itoh, T., and Chin, R.: In situ TEM studies of metal–carbon reactions. Microsc. Microanal. 8, 288 (2002).CrossRefGoogle ScholarPubMed
Kikowatz, R., Flad, K., and Hörz, G.: Effects of carbon and sulfur on the decomposition of hydrocarbons on nickel. J. Vac. Sci. Technol. A 5, 1009 (1987).CrossRefGoogle Scholar
Liu, W., Li, H., Xu, C., Khatami, Y., and Banerjee, K.: Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49, 4122 (2011).CrossRefGoogle Scholar
Liu, X., Fu, L., Liu, N., Gao, T., Zhang, Y., Liao, L., and Liu, Z.: Segregation growth of graphene on Cu–Ni alloy for precise layer control. J. Phys. Chem. C 115, 11976 (2011).CrossRefGoogle Scholar
Chen, X., Zhang, L., and Chen, S.: Large area CVD growth of graphene. Synth. Met. 210, 95 (2015).CrossRefGoogle Scholar
Sojoudi, H. and Graham, S.: Transfer-free selective area synthesis of graphene using solid-state self-segregation of carbon in Cu/Ni bilayers. ECS J. Solid State Sci. Technol. 2, M17 (2013).10.1149/2.016306jssCrossRefGoogle Scholar
Saenger, K.L., Tsang, J.C., Bol, A.A., Chu, J.O., Grill, A., and Lavoie, C.: In situ x-ray diffraction study of graphitic carbon formed during heating and cooling of amorphous-C/Ni bilayers. Appl. Phys. Lett. 96, 153105 (2010).CrossRefGoogle Scholar
Sutter, E., Albrecht, P., and Sutter, P.: Graphene growth on polycrystalline Ru thin films. Appl. Phys. Lett. 95, 133109 (2009).10.1063/1.3224913CrossRefGoogle Scholar
Knaepen, W., Gaudet, S., Detavernier, C., Van Meirhaeghe, R.L., Sweet, J.J., and Lavoie, C.: In situ x-ray diffraction study of metal induced crystallization of amorphous germanium. J. Appl. Phys. 105, 083532 (2009).CrossRefGoogle Scholar
Wang, K.: Laser based fabrication of graphene. In Advances in Graphene Science (M. Aliofkhazraci (ed) IntechOpen, London, UK, 2013); ch. 4; pp. 7795.Google Scholar
Ani, M.H., Kamarudin, M.A., Ramlan, A.H., Ismail, E., Sirat, M.S., Mohamed, M.A., and Azam, M.A.: A critical review on the contributions of chemical and physical factors toward the nucleation and growth of large-area graphene. J. Mater. Sci. 53, 7095 (2018).CrossRefGoogle Scholar
Dahal, A. and Batzill, M.: Graphene–nickel interfaces: A review. Nanoscale 6, 2548 (2014).CrossRefGoogle ScholarPubMed
Gong, C., Lee, G., Shan, B., Vogel, E.M., Wallace, R.M., and Cho, K.: First-principles study of metal–graphene interfaces. J. Appl. Phys. 108, 123711 (2010).10.1063/1.3524232CrossRefGoogle Scholar
Han, G.H., Günes, F., Bae, J.J., Kim, E.S., Chae, S.J., Shin, H-J., Choi, J-Y., Pribat, D., and Lee, Y.H.: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144 (2011).10.1021/nl201980pCrossRefGoogle ScholarPubMed
Nie, S., Wofford, J.M., Bartelt, N.C., Dubon, O.D., and McCarty, K.F.: Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B 84, 155425 (2011).10.1103/PhysRevB.84.155425CrossRefGoogle Scholar
Kim, H., Mattevi, C., Calvo, M.R., Oberg, J.C., Artiglia, L., Agnoli, S., Hirjibehedin, C.F., Chhowalla, M., and Saiz, E.: Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6, 3614 (2012).CrossRefGoogle Scholar
Seah, C-M., Chai, S-P., and Mohamed, A.R.: Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70, 1 (2014).CrossRefGoogle Scholar
Losurdo, M., Giangregorio, M.M., Capezzuto, P., and Bruno, G.: Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836 (2011).10.1039/c1cp22347jCrossRefGoogle ScholarPubMed
Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y.P., and Pei, S-S.: Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008).10.1063/1.2982585CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Benerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).CrossRefGoogle ScholarPubMed
Woodworth, A.A. and Stinespring, C.D.: Surface chemistry of Ni induced graphite formation on the 6H-SiC(0 0 0 1) surface and its implications for graphene synthesis. Carbon 48, 1999 (2010).CrossRefGoogle Scholar
Panwar, O.S., Kesarwani, A.K., Dhakate, S.R., and Satyanarayana, B.S.: Graphene synthesized using filtered cathodic vacuum arc technique and its applications. Vacuum 153, 262 (2018).CrossRefGoogle Scholar
Liu, N., Fu, L., Dai, B., Yan, K., Liu, X., Zhao, R., Zhang, Y., and Liu, Z.: Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 11, 297 (2011).10.1021/nl103962aCrossRefGoogle ScholarPubMed
Juang, Z-Y., Wu, C-Y., Lo, C-W., Chen, W-Y., Huang, C-F., Hwang, J-C., Chen, F-R., Leou, K-C., and Tsai, C-H.: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47, 2026 (2009).CrossRefGoogle Scholar
Hofrichter, J., Szafranek, B.N., Otto, M., Echtermeyer, T.J., Baus, M., Majerus, A., Geringer, V., Ramsteiner, M., and Kurz, H.: Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett. 10, 36 (2010).CrossRefGoogle ScholarPubMed
Li, C., Li, D., Yang, J., Zeng, X., and Yuan, W.: Preparation of single- and few-layer graphene sheets using Co deposition on SiC substrate. J. Nanomater. 2011, 319624 (2011).CrossRefGoogle Scholar
Yoneda, T., Shibuya, M., Mitsuhara, K., Visikovskiy, A., Hoshino, Y., and Kido, Y.: Graphene on SiC(0001) and ${\rm{SiC}} (000\bar1)$ surfaces grown via Ni-silicidation reactions. Surf. Sci. 604, 1509 (2010).10.1016/j.susc.2010.05.019CrossRefGoogle Scholar
Yoon, S-M., Choi, W.M., Baik, H., Shin, H-J., Song, I., Kwon, M-S., Bae, J.J., Kim, H., Lee, Y.H., and Choi, J-Y.: Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6, 6803 (2012).CrossRefGoogle ScholarPubMed
Seo, J.H., Lee, H.W., Kim, J-K., Kim, D-G., Kang, J-W., Kang, M-S., and Kim, C.S.: Few layer graphene synthesized by filtered vacuum arc system using solid carbon source. Curr. Appl. Phys. 12, S131 (2012).CrossRefGoogle Scholar
Tite, T., Barnier, V., Donnet, C., Loir, A-S., Reynaud, S., Michalon, J-Y., Vocanson, F., and Garrelie, F.: Surface enhanced Raman spectroscopy platform based on graphene with one-year stability. Thin Solid Films 604, 74 (2016).CrossRefGoogle Scholar
Barreiro, A., Börrnert, F., Avdoshenko, S.M., Rellinghaus, B., Cuniberti, G., Rümmeli, M.H., and Vandersypen, L.M.K.: Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing, Sci. Rep. 3, 1115 (2013).Google Scholar
Ni, Z.H., Wang, H.M., Ma, Y., Kasim, J., Wu, Y.H., and Shen, Z.X.: Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2, 1033 (2008).CrossRefGoogle ScholarPubMed
Kumar, P.: Laser flash synthesis of graphene and its inorganic analogues: An innovative breakthrough with immense promise. RSC Adv. 3, 11987 (2013).CrossRefGoogle Scholar
Yang, Z. and Hao, J.: Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mater. Chem. C 4, 8859 (2016).10.1039/C6TC01602BCrossRefGoogle Scholar
Bleu, Y., Bourquard, F., Tite, T., Loir, A-S., Maddi, C., Donnet, C., and Garrelie, F.: Review of graphene growth from a solid carbon source by pulsed laser deposition (PLD). Front. Chem. 6, 572 (2018).10.3389/fchem.2018.00572CrossRefGoogle Scholar
Abd Elhamid, A.M., Aboulfotouh, A.M., Hafez, M.A., and Azzouz, I.M.: Room temperature graphene growth on complex metal matrix by PLD. Diam. Relat. Mater. 80, 162 (2017).CrossRefGoogle Scholar
Kaushik, V., Sharma, H., Shukla, A.K., and Vankar, V.D.: Sharp folded graphene ribbons formed by CO2 laser ablation for electron field emission studies. Vacuum 110, 1 (2014).CrossRefGoogle Scholar
Koshida, K., Gumi, K., Ohno, Y., Maehashi, K., Inoue, K., and Matsumoto, K.: Position-controlled direct graphene synthesis on silicon oxide surfaces using laser irradiation. Appl. Phys. Exp. 6, 105101 (2013).CrossRefGoogle Scholar
Wang, K., Tai, G., Wong, K.H., Lau, S.P., and Guo, W.: Ni induced few-layer graphene growth at low temperature by pulsed laser deposition. AIP Adv. 1, 022141 (2011).CrossRefGoogle Scholar
Kumar, I. and Khare, A.: Multi- and few-layer graphene on insulating substrate via pulsed laser deposition technique. Appl. Surf. Sci. 317, 1004 (2014).CrossRefGoogle Scholar
Lemaitre, M.G., Tongay, S., Wang, X., Venkatachalam, D.K., Fridmann, J., Gila, B.P., Hebard, A.F., Ren, F., Elliman, R.G., and Appleton, B.R.: Low-temperature, site selective graphitization of SiC via ion implantation and pulsed laser annealing. Appl. Phys. Lett. 100, 193105 (2012).CrossRefGoogle Scholar
Kim, S.S., Hishita, S., Cho, T.S., and Je, J.H.: Graphitization of ultrathin amorphous carbon films on Si(001) by Ar+ ion irradiation at ambient temperature. J. Appl. Phys. 88, 55 (2000).10.1063/1.373623CrossRefGoogle Scholar
Tinchev, S.S.: Surface modification of diamond-like carbon films to graphene under low energy ion beam irradiation. Appl. Surf. Sci. 258, 2931 (2012).CrossRefGoogle Scholar
Börrnert, F., Avdoshenko, S.M., Bachmatiuk, A., Ibrahim, I., Büchner, B., Cuniberti, G., and Rümmeli, M.H.: Amorphous carbon under 80 kV electron irradiation: A means to make or break graphene. Adv. Mater. 24, 5630 (2012).CrossRefGoogle ScholarPubMed
Yajima, A., Abe, S., Fuse, T., Mera, Y., Maeda, K., and Suzuki, K.: Electron-irradiation-induced ordering in tetrahedral-amorphous carbon films. Mol. Cryst. Liq. Cryst. 388, 147 (2002).CrossRefGoogle Scholar
Ugarte, D.: Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707 (1992).CrossRefGoogle ScholarPubMed
Loh, G.C. and Baillargeat, D.: Graphitization of amorphous carbon and its transformation pathways. J. Appl. Phys. 114, 033534 (2013).CrossRefGoogle Scholar
Onodera, A., Irie, Y., Higashi, K., Umemura, J., and Takenaka, T.: Graphitization of amorphous carbon at high pressures to 15 GPa. J. Appl. Phys. 69, 2611 (1991).CrossRefGoogle Scholar
Subrahmanyam, K.S., Panchakarla, L.S., Govindaraj, A., and Rao, C.N.R.: Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113, 4257 (2009).CrossRefGoogle Scholar
Wu, Z-S., Ren, W., Gao, L., Zhao, J., Chen, Z., Liu, B., Tang, D., Yu, B., Jiang, C., and Cheng, H-M.: Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411 (2009).CrossRefGoogle ScholarPubMed
Chen, Y., Zhao, H., Sheng, L., Yu, L., An, K., Xu, J., Ando, Y., and Zhao, X.: Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2–inert gas mixtures. Chem. Phys. Lett. 538, 72 (2012).CrossRefGoogle Scholar
Miyamoto, Y., Zhang, H., and Tománek, D.: Photoexfoliation of graphene from graphite: An ab initio study. Phys. Rev. Lett. 104, 208302 (2010).CrossRefGoogle Scholar
Qian, M., Zhou, Y.S., Gao, Y., Park, J.B., Feng, T., Huang, S.M., Sun, Z., Jiang, L., and Lu, Y.F.: Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Appl. Phys. Lett. 98, 173108 (2011).CrossRefGoogle Scholar
Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L., and Ferrari, A.C.: Production and processing of graphene and 2d crystals. Mater. Today 15, 564 (2012).CrossRefGoogle Scholar
Sarath Kumar, S.R. and Alshareef, H.N.: Ultraviolet laser deposition of graphene thin films without catalytic layers. Appl. Phys. Lett. 102, 012110 (2013).CrossRefGoogle Scholar
Benhagouga, R.H., Abdelli-Messaci, S., Abdesselam, M., Blondeau-Patissier, V., Yahiaoui, R., Siad, M., and Rahal, A.: Temperature effect on hydrogenated amorphous carbon leading to hydrogenated graphene by pulsed laser deposition. Appl. Surf. Sci. 426, 874 (2017).CrossRefGoogle Scholar
Koh, A.T.T., Foong, Y.M., and Chua, D.H.C.: Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature. Appl. Phys. Lett. 97, 114102 (2010).10.1063/1.3489993CrossRefGoogle Scholar
Mortazavi, S.Z., Parvin, P., and Reyhani, A.: Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen. Laser Phys. Lett. 9, 547 (2012).CrossRefGoogle Scholar
Banerjee, B.C. and Walker, P.L. Jr.: Interaction of evaporated carbon films with nickel. J. Appl. Phys. 33, 229 (1962).CrossRefGoogle Scholar
Lux, H., Edling, M., Siemroth, P., and Schrader, S.: Fast and cost-effective synthesis of high-quality graphene on copper foils using high-current arc evaporation. Materials 11, 804 (2018).CrossRefGoogle ScholarPubMed
Oldfield, D.T., McCulloch, D.G., Huynh, C.P., Sears, K., and Hawkins, S.C.: Multilayered graphene films prepared at moderate temperatures using energetic physical vapour deposition. Carbon 94, 378 (2015).CrossRefGoogle Scholar
Azpeitia, J., Otero-Irurueta, G., Palacio, I., Martinez, J.I., Ruiz del Árbol, N., Santoro, G., Gutiérrez, A., Aballe, L., Foerster, M., Kalbac, M., Vales, V., Mompeán, F.J., García-Hernández, M., Martín-Gago, J.A., Munuera, C., and López, M.F.: High-quality PVD graphene growth by fullerene decomposition on Cu foils. Carbon 119, 535 (2017).CrossRefGoogle ScholarPubMed
Zhao, G., Shao, D., Chen, C., and Wang, X.: Synthesis of few-layered graphene by H2O2 plasma etching of graphite. Appl. Phys. Lett. 98, 183114 (2011).CrossRefGoogle Scholar
Tanaka, H., Arima, R., Fukumori, M., Tanaka, D., Negishi, R., Kobayashi, Y., Kasai, S., Yamada, T.K., and Ogawa, T.: Method for controlling electrical properties of single-layer graphene nanoribbons via adsorbed planar molecular nanoparticles. Sci. Rep. 5, 12341 (2015).CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A review of graphene synthesis by indirect and direct deposition methods
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A review of graphene synthesis by indirect and direct deposition methods
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A review of graphene synthesis by indirect and direct deposition methods
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *