Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T00:21:04.877Z Has data issue: false hasContentIssue false

Reduced-pressure MOCVD of highly crystalline BaTiO3 thin films

Published online by Cambridge University Press:  31 January 2011

Peter C. Van Buskirk
Affiliation:
Advanced Technology Materials, Danbury, Connecticut 06810
Robin Gardiner
Affiliation:
Advanced Technology Materials, Danbury, Connecticut 06810
Peter S. Kirlin
Affiliation:
Advanced Technology Materials, Danbury, Connecticut 06810
Steven Nutt
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Get access

Abstract

Epitaxial BaTi3 films have been grown on NdGaO3 [100] substrates by reduced pressure MOCVD for the first time. The substrate temperature was 1000 °C and the total pressure was 4 Torr. Electron and x-ray diffraction measurements indicate highly textured, single phase films on the NdGaO3 substrate which are predominantly [100], with [110] also present. TEM and selected area electron diffraction (SAED) indicate two specific orientational relationships between the [110] and the [001] diffraction patterns.

Type
Communications
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series, III/ll, edited by Hellwege, K. H., 682, 685 (1979).Google Scholar
2.Holman, R. L., Johnson, L. M., and Skinner, D. P., Optical Eng. 26 (2), 134142 (1987).CrossRefGoogle Scholar
3.Feuersanger, A.E., J. Electrochem. Soc. 111 (12), 13871391 (1964).CrossRefGoogle Scholar
4.Slack, J. R. and Burfoot, J. C., J. Phys. C: Solid State Physics 4, 898909 (1971).CrossRefGoogle Scholar
5.Iijima, K., Terashima, T., Yamamoto, K., Hirata, K. and Bando, Y., Appl. Phys. Lett. 56 (6), 527529 (1990).CrossRefGoogle Scholar
6.Sreenivas, K., Mansingh, A., and Sayer, M., J. Appl. Phys. 62 (11), 44764481 (1987).CrossRefGoogle Scholar
7.Fujimoto, K., Kobayashi, Y., and Kubota, K., Thin Solid Films 169 249256 (1989).CrossRefGoogle Scholar
8.Nawathey, R., Vispute, R. D., Chaudhari, S. M., Kanetkar, S. M., and Ogale, S.B., Solid State Commun. 71 (1), 912 (1989).CrossRefGoogle Scholar
9.Davis, G. M. and Gower, M. C., Appl. Phys. Lett. 55 (2), 112114 (1989).CrossRefGoogle Scholar
10.Norton, M.G. and Carter, C.B., J. Mater. Res. 5, 27622765 (1990).CrossRefGoogle Scholar
11.Kwak, B.S., Zhang, K., Boyd, E.P., and Erbil, A., J. Appl. Phys. 69 (2), 767772 (1991).CrossRefGoogle Scholar
12.Van Buskirk, P. C., Gardiner, R., and Kirlin, P. S., in Evolution of Thin-Film and Surface Microstructure, edited by Thompson, C.V., Tsao, J. Y., and Srolovitz, D. J. (Mater. Res. Soc. Symp. Proc. 202, Pittsburgh, PA, 1991).Google Scholar
13.Houtman, D. B., Graves, D. B., and Jensen, K. F., J. Electrochem. Soc. 133, 961 (1986).CrossRefGoogle Scholar
14.Hamaguchi, N., Vigil, J., Gardiner, R., and Kirlin, P. S., Jpn. J. Appl. Phys. 29 (4), L596599 (1990).CrossRefGoogle Scholar
15.Koren, G., Appl. Phys. Lett. 54, 1054 (1989).CrossRefGoogle Scholar
16.Asano, T., Tran, K., Byrne, A. S., Rahman, M. M., Yang, C. Y., and Reardon, J. D., Appl. Phys. Lett. 54, 1275 (1989).CrossRefGoogle Scholar
17. Measurement performed by Professor Steven Suib, Chemistry Department, University of Connecticut.Google Scholar
18. The melting point of SrTiO3 is 2080 °C.Google Scholar
19.Kingon, A. I., Rou, S.H., Graettinger, T.M., Al-Shareef, H.S., Gifford, K., Ameen, M. S., and O. Auciello, Proc. 3rd Int. Symp.on Integrated Ferroelectrics, April 3–5, 1991, Colorado Springs, CO, to be published.Google Scholar
20. JCPDS Powder Diffraction File, Int. Center for Diffraction Data, 1982.Google Scholar