Hostname: page-component-7dc689bd49-sqk25 Total loading time: 0 Render date: 2023-03-21T12:22:23.955Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Reactive epoxies with functional zeolite fillers: IR spectroscopy and PALS studies

Published online by Cambridge University Press:  10 October 2011

Muhammad Quasim Shaikh
Faculty of Engineering, Institute for Materials Science, Multicomponent Materials, Christian-Albrechts University at Kiel, 24143 Kiel, Germany
Klaus Rätzke*
Faculty of Engineering, Institute for Materials Science, Multicomponent Materials, Christian-Albrechts University at Kiel, 24143 Kiel, Germany
Jan Christian Gaukler
Saarland University, Chair for Adhesion and Interphases in Polymers, D-66041 Saarbruecken, Germany
Wulff Possart
Saarland University, Chair for Adhesion and Interphases in Polymers, D-66041 Saarbruecken, Germany
Franz Faupel
Faculty of Engineering, Institute for Materials Science, Multicomponent Materials, Christian-Albrechts University at Kiel, 24143 Kiel, Germany
a)Address all correspondence to this author. e-mail:
Get access


Epoxy–dicyandiamide (Dicy) formulations frequently contain a free accelerator for reducing the curing temperature and the time for network formation, which reduces the shelf life of these adhesives. This study compared the reaction kinetics during the storage at 60 °C for a precured epoxy adhesive (EP = diglycidyl ether of bisphenol A and Dicy, mass ratio 100:6.7, precured at 150 °C for 1 h) mixed either with free accelerator (=EPacc) or with the same concentration of accelerator immobilized in micro- or nanozeolite fillers (EPμ-filled and EPn-filled, respectively). During storage, the infrared (IR) study probed the chemical modifications. They lead to increasing cross-linking density and a loss of free volume as detected by positron annihilation lifetime spectroscopy (PALS). Cross-linking precedes to the chemical vitrification. Additionally, the glass transition and the free-volume parameters were investigated for the three EP’s as a function of temperature by PALS after thermal curing.

Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Goulding, T.M.: In Handbook of Adhesive Technology, edited by Pizzi, A. and Mittal, K.L. (Marcel Dekker Inc., New York, 2003).Google Scholar
2.Webster, G.: Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints (John Wiley & Sons, New York, 1997).Google Scholar
3.Flick, E.W.: Contemporary Industrial Coatings, Enviromentally Safe Formulations. (Noyes Publishers, Park Ridge, NJ, 1985).Google Scholar
4.Goertzen, W.K. and Kessler, M.R.: Creep behavior of carbon fiber/epoxy matrix composites. Mater. Sci. Eng., A 421(1–2), 217 (2006).CrossRefGoogle Scholar
5.Rätzke, K., Shaikh, M.Q., Faupel, F., and Noeske, P-L.M.: Shelf stability of reactive adhesive formulations: A case study for dicyandiamide-cured epoxy systems. Int. J. Adhes. Adhes. 30(2), 105 (2010).CrossRefGoogle Scholar
6.Mark, H.F. (ed.): Epoxy resins, in Encyclopedia of Polymer Science and Technology, Vol. 9 (John Wiley & Sons, 2004).Google Scholar
7.Dlubek, G., Pointeck, J., Shaikh, M.Q., Hassan, E., and Krause-Rehberg, R.: Free volume of an oligomeric epoxy resin and its relation to structural relaxation: Evidence from positron lifetime and pressure-volume-temperature experiments. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 75, 021802 (2007).CrossRefGoogle ScholarPubMed
8.Jean, Y.C., Mallon, P.E., and Schrader, D.M.: Principles and Application of Positron & Positronium Chemistry (World Scientific Publishing Co., Singapore, 2003).CrossRefGoogle Scholar
9.Rudel, M., Kruse, J., Rätzke, K., Faupel, F., Yampolskii, Y.P., Shantarovich, V.P., and Dlubek, G.: Temperature dependence of positron annihilation lifetimes in high permeability polymers: Amorphous Teflons AF. Macromolecules 41, 788 (2008).CrossRefGoogle Scholar
10.Dlubek, G., Pionteck, J., Rätzke, K., Kruse, J., and Faupel, F.: Temperature dependence of the free volume in amorphous Teflon AF1600 and AF2400: A pressure-volume-temperature and positron lifetime study. Macromolecules 41(16), 6125 (2008).CrossRefGoogle Scholar
11.Suzuki, T. and Yamada, Y.: Characterization of 6FDA-based hyperbranched and linear polyimide-silica hybrid membranes by gas permeation and 129Xe NMR measurements. J. Polym. Sci. Ser. B: Polym. Phys. 44(2), 291 (2006).CrossRefGoogle Scholar
12.Shantarovich, V.: Positron annihilation lifetime spectroscopy and other methods for free volume evaluation in polymers, in Materials Science of Membranes: For Gas and Vapor Separation, edited by Freeman, B. and Yampolski, Y. (John Wiley & Sons, United Kingdom, 2006). p. 191.Google Scholar
13.Yave, W., Car, A., Peinemann, K-V., Shaikh, M.Q., Rätzke, K., and Faupel, F.: Condensable gas permeability in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes. J. Membr. Sci. 339(1–2), 177 (2007).CrossRefGoogle Scholar
14.Emmler, T., Heinrich, K., Fritsch, D., Budd, P.M., Chaukura, N., Ehlers, D., Rätzke, K., and Faupelet, F.: The free volume investigation of polymers of intrinsic microporosity (PIMs): PIM-1 and a PIM1 copolymer with increased stiffness. Macromolecules 43(14), 6075 (2010).CrossRefGoogle Scholar
15.Jansen, J.C., Macchione, M., Tocci, E., De Lorenzo, L., Yampolskii, Y.P., Sanfirova, O., Shantarovich, V.P., Heuchel, M., Hofmann, D., and Drioli, E.: Comparative study of different probing techniques for the analysis of the free volume distribution in amorphous glassy perfluoropolymers. Macromolecules 42(19), 7589 (2009).CrossRefGoogle Scholar
16.Dlubek, G.: Positron annihilation lifetimes spectroscopy, in Encyclopedia of Polymer Science and Technology, edited by Seidel, A. (John Wiley & Sons, Hoboken, NJ, 2008).Google Scholar
17.Mogensen, O.: Positron annihilation in chemistry, in Springer Series in Chemical Physics (Springer-Verlag, 1995).Google Scholar
18.Nagel, C., Schmidtke, E., Günther-Schade, K., Hofmann, D., Fritsch, D., Strunskus, T., and Faupel, F.: Free volume distributions in glassy polymer membranes: Comparison between molecular modeling and experiments. Macromolecules 33(6), 2242 (2000).CrossRefGoogle Scholar
19.Schmidtke, E., Günther-Schade, K., Hofmann, D., and Faupel, F.: The distribution of the unoccupied volume in glassy polymers. J. Mol. Graph. Model. 22(4), 309 (2004).CrossRefGoogle ScholarPubMed
20.Kruse, J., Kanzow, J., Rätzke, K., Faupel, F., Heuchel, M., Frahn, J., and Hofmann, D.: Free volume in polyimides: positron annihilation experiments and molecular modelling. Macromolecules 38(23), 9638 (2005).CrossRefGoogle Scholar
21.Lima de Mirande, R., Kruse, J., Rätzke, K., Fritsch, D., Abetz, V., Budd, P.M., Selbi, J.D., McKeown, N.B., Ghanem, B.S., and Faupel, F.: Unusual temperature dependence of positron lifetime in a polymer of intrinsic microporosity. Phys. Status Solidi RRL 1(5), 190 (2007).CrossRefGoogle Scholar
22.Sterescu, D.M., Stamatialis, D.F., Mendes, E., Kruse, J., Rätzke, K., Wessling, M., and Faupel, F.: Boltorn-modified poly (2-6-dimethyl-1,4-phenylene oxide) gas separation membrane. Macromolecules 40(15), 5400 (2007).CrossRefGoogle Scholar
23.Dlubek, G., Shaikh, M.Q., Rätzke, K., Faupel, F., Pionteck, J., and Paluch, M.: The temperature dependence of free volume in phenyl salicylate and its relation to structural dynamics: A positron annihilation lifetime and pressure-volume-temperature study. J. Chem. Phys. 130, 144906 (2009).CrossRefGoogle ScholarPubMed
24.Wang, Y.Y., Nakanishi, H., Jean, Y.C., and Sandreczki, T.C.: Positron annihilation in amine-cured epoxy polymers—pressure dependence. J. Polym. Sci., Part B: Polym. Phys. 28, 1431 (1990).CrossRefGoogle Scholar
25.MacKinnon, A.J., Pethrick, R.A., Jenkins, S.D., and McGrail, P.T.: Investigation of thermoplastic-modified thermosets: Positron annihilation and related studies of an amine-cured epoxy resin. Polymer 35(24), 5319 (1994).CrossRefGoogle Scholar
26.Suzuki, T., Hayashi, T., and Ito, Y.: Polymerization of epoxy resins studied by positron annihilation. Mater. Res. Innovations 4, 273 (2001).CrossRefGoogle Scholar
27.Kanzow, J., Faupel, F., Egger, W., Sperr, P., Kögel, G., Wehlack, C., Meiser, A., and Possart, W.: Depth-resolved analysis of the aging behavior of epoxy thin films by positron spectroscopy, in Adhesion: Current Research and Applications; Possart, Wulff, ed. (Wiley-VCH, Verlag, 2005), pp. 465.Google Scholar
28.Faupel, F., Kanzow, J., Günther-Schade, K., Nagel, C., Sperr, P., and Kögel, G.: Positron annihilation spectroscopy. polymers. Mater. Sci. Forum 445446, 219 (2004).CrossRefGoogle Scholar
29.Christian, J.W.: The Theory of Transformations in Metals and Alloys. Part I, Equilibrium and General Kinetic Theory (Pergamon Press, Oxford, 1975).Google Scholar
30.Sperling, L.H.: Introduction to Physical Polymer Science (Wiley, New York, 2005).CrossRefGoogle Scholar
31.Abetz, V.: Advances in Polymer Science. Block Copolymers II (Springer-Verlag, Berlin, 2005).CrossRefGoogle Scholar
32.Somoza, A., Salgueiro, W., Goyanes, S., Ramos, J., and Mondragón, I.: Volume changes at macro- and nano-scale in epoxy resins studied by PALS and PVT experimental techniques. Radiat. Phys. Chem. 76(2), 118 (2007).CrossRefGoogle Scholar
33.Lu, M.G., Shim, M.J., and Shim, S.W.: The macrokinetic model of thermosetting polymers by phase-change theory. Mater. Sci. Commun. 56, 193 (1998).Google Scholar
35.Gaukler, J.Ch., Müller, U., Krüger, J.K., and Possart, W.: Shelf life and controlled cure by loaded zeolite. Compos. Interfaces 17, 743 (2010).CrossRefGoogle Scholar
36.Gaukler, J.Ch., Müller, U., Krüger, J.K., and Possart, W.: Functional nano fillers in epoxy-dicyandiamide adhesives for prolonged shelf life and efficient cure. e-Polymers Art. No. 010, 2011.CrossRefGoogle Scholar
37.Tao, S.J.: Positronium annihilation in molecular substances. J. Chem. Phys. 56, 5499 (1972).CrossRefGoogle Scholar
38.Kansy, J.: Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res., Sect. A 374(2), 235 (1996).CrossRefGoogle Scholar
39.Jean, Y.C.: Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers. Microchem. J. 42, 72 (1990).CrossRefGoogle Scholar
40.Ashcroft, W.R.: Chemistry and Technology of Epoxy Resins, edited by Ellis, B. (Blackie Academic & Professional, Glasgow, United Kingdom, 1993), pp. 37, 71.CrossRefGoogle Scholar
41.Mandelkern, L.: Crystallization of Polymers: Kinetics and Mechanisms, Vol. 2 (Cambridge University Press, United Kingdom, 2004).CrossRefGoogle Scholar
42.Srithawatpong, R., Peng, Z.L., Olson, B.G., Jamieson, A.M., Samha, R., McGervey, J.D., Maier, T.R., Halasa, A.F., and Ishida, H.: Positron annihilation lifetime studies of changes in free volume on cross-linking cis-polyisoprene, high-vinyl polybutadiene, and their miscible blends. J. Polym. Sci., Part B: Polym. Phys. 37(19), 2754 (1999).3.0.CO;2-F>CrossRefGoogle Scholar
43.Kruse, J., Rätzke, K., Faupel, F., Sterescu, D.M., Stamatialis, D.F., and Wessling, M.: Free volume in C-60 modified PPO polymer membranes by positron annihilation lifetime spectroscopy. J. Phys. Chem. B 111(50), 13914 (2007).CrossRefGoogle Scholar
44.Kanzow, J., Zaporojtchenko, V., Nabika, H., Mizuhata, M., Deki, S., and Faupel, F.: In situ investigations on the cross-linking process of the epoxy resin system DGEBA-DETA by means of positron annihilation lifetime spectroscopy in comparison with infrared spectroscopy. Mater. Sci. Forum 445446, 313 (2004).CrossRefGoogle Scholar
45.Harms, S., Rätzke, K., Faupel, F., Schneider, G., Wöllner, L., and Richter, D.: Free volume studies of interphases in model nanocomposites by positron annihilation lifetime spectroscopy. Macromolecules 43, 10505 (2010).CrossRefGoogle Scholar
46.Elias, H-G.: Macromolecules. Vol. 2, 6th revised edition. (Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Tokyo, 2001), p. 453.Google Scholar
47.Riande, E. and Diaz-Calleja, R.: Polymer Viscoelasticity: Stress and Strain in Practice (Marcel Dekker, New York, 2000).Google Scholar
48.Gröppel, P.: Development of cross-linking controlling nanomodules with controlled release function for polymerresin systems with increased storage stability and reduced hardening temperature (Nanomodule): final report. Sponsored by German Ministry of Education and Research (BMBF) within the program “Nanochem” and the framework program “Materials Innovation for industry and society (WING).” Report period 1.11.2006-30.10.2009. Erlangen, 2010.Google Scholar