Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-s7zjg Total loading time: 0.301 Render date: 2022-01-26T06:54:14.106Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Radiolytic effects in organic compounds induced and analyzed by a 15N beam

Published online by Cambridge University Press:  03 March 2011

S. Jans
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany
S. Kalbitzer*
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany
P. Oberschachtsiek
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany
M. Behar
Affiliation:
Instituto de Fisica, Universidade Federal Rio Grande do Sul, 90510 Porto Alegre, Brazil
*
a)Address all correspondence to this author.
Get access

Abstract

Cd-arachidat in the form of Langmuir-Blodgett films and thick photoresist layers of AZ5412H have been exposed to 15N-ion beams. The physico-chemical state of these targets as a function of the 15N fluence has been monitored by the 15N nuclear reaction with the respective H component. In this way, radiolytic changes in H distribution and bonding have been measured. In particular, diffusion and desorption processes have quantitatively been followed up to fluences of about 1 × 1016 N/cm2 at temperatures as low as 40 K. The correlated changes in H bonding, obtained by analyzing the concomitant Doppler widths as a function of the 15N fluence, consist of both decomposition and restoration of C-H and H-H molecular groups.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Zinke-Allmang, M., Kalbitzer, S., and Weiser, M., Z. Phys. A320, 697 (1985).CrossRefGoogle Scholar
2Zinke-Allmang, M. and Kalbitzer, S., Z. Phys. A323, 251 (1986).Google Scholar
3Izsak, K., Kalbitzer, S., Weiser, M., and Zinke-Allmang, M., Nucl. Instrum. Methods B33, 578 (1988).CrossRefGoogle Scholar
4Venkatesan, T., Calcagno, L., Elman, B. S., and Foti, G., in Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. (Elsevier Science Publishers, New York, 1987), and references therein.Google Scholar
5Ziegler, J. F., Biersack, J. P., and Littmark, U., in Stopping and Ranges of Ions in Solids, edited by Ziegler, J. F. (Pergamon, New York, 1985), Vol. 1; Code version: TRIM 91.Google Scholar
6Damjantschitsch, H., Weiser, M., Heusser, G., Kalbitzer, S., and Mannsperger, H., Nucl. Instrum. Methods 218, 129 (1983).CrossRefGoogle Scholar
7Zinke-Allmang, M., Kössler, V., and Kalbitzer, S., Nucl. Instrum. Methods B15, 563 (1986).CrossRefGoogle Scholar
8Brandt, W. and Kitagawa, M., Phys. Rev. B 25, 5631 (1982).CrossRefGoogle Scholar
9Jans, S., Kalbitzer, S., Oberschachtsiek, P., and Behar, M., Nucl. Instrum. Methods B83, 1 (1993).CrossRefGoogle Scholar
10Fechtig, H. and Kalbitzer, S., in Potassium-Argon Dating, edited by Schaeffer, O.A. and Zähringer, J. (Springer-Verlag, Berlin-Heidelberg, 1966), p. 68.CrossRefGoogle Scholar
11Reinelt, M., Kalbitzer, S., and Müller, G., J. Non-Cryst. Solids 59/60, 169 (1983).CrossRefGoogle Scholar
12Pilakouta, M., Aslanoglou, X., Savidou, A., Paradellis, T., and Sideris, E., Nucl. Instrum. Methods B68, 141 (1992).CrossRefGoogle Scholar
13Calcagno, L., Compagnini, G., and Foti, G., Nucl. Instrum. Methods B65, 413 (1992), and references therein.CrossRefGoogle Scholar
14Calcagno, L. and Foti, G., in Extended Abstracts No. 17, Fractal Aspects of Materials: Disordered Systems, edited by Weitz, D. A., Sander, L. M., and Mandelbrot, B. B. (Materials Research Society, Pittsburgh, PA, 1988), p. 511.Google Scholar
15Abel, F., private communication.Google Scholar
16Milleville, M., Fuhs, W., Demond, F. J., Mannsperger, H., Müller, G., and Kalbitzer, S., Appl. Phys. Lett. 34, 173 (1979).CrossRefGoogle Scholar
17Endisch, D., Rauch, F., Götzelmann, A., Reiter, G., and Stamm, M., Nucl. Instrum. Methods B62, 513 (1992).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Radiolytic effects in organic compounds induced and analyzed by a 15N beam
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Radiolytic effects in organic compounds induced and analyzed by a 15N beam
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Radiolytic effects in organic compounds induced and analyzed by a 15N beam
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *