Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T04:28:37.071Z Has data issue: false hasContentIssue false

Pulse laser processing of a SiC/Al-alloy metal matrix composite

Published online by Cambridge University Press:  08 February 2011

Narendra B. Dahotre
Affiliation:
Center for Laser Applications, The University of Tennessee Space Institute, Tullahoma, Tennessee 37388
Mary Helen McCay
Affiliation:
Center for Laser Applications, The University of Tennessee Space Institute, Tullahoma, Tennessee 37388
T. Dwayne McCay
Affiliation:
Center for Laser Applications, The University of Tennessee Space Institute, Tullahoma, Tennessee 37388
Santosh Gopinathan
Affiliation:
Center for Laser Applications, The University of Tennessee Space Institute, Tullahoma, Tennessee 37388
Lawrence F. Allard
Affiliation:
High Temperature Materials Laboratory, Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

The microstructural changes and the tensile behavior of laser processed A356-Al alloy matrix composites reinforced with 10 and 20 vol.% SiC particulates are characterized. The autogenous bead-on-plate welds were made using a pulsed CO2 laser operating at a peak power level of 3.2 kW. The pulse on-time was constant at 20 ms and the off-time was varied from 20 to 2 ms (duty cycles of 50–91%). The microstructure of the laser melted region was investigated by optical, scanning, and transmission electron microscopy, and x-ray microchemical analysis techniques. The extent of microstructural changes varied directly with duty cycle, i.e., being a maximum for the longest (91%) duty cycles. Pulsed laser processing produced partial to complete dissolution of SiC particles and sometimes resulted in the formation of aluminum carbide. The associated rapid cooling also produced a fine distribution of nonequilibrium complex precipitates. In addition, the laser energy modified the SiC surface both physically and chemically. The results of tensile tests indicated that the modified SiC and the distribution of fine nonequilibrium precipitates enhance the mechanical properties of the laser processed composites. Optimum changes in microstructure and mechanical properties were obtained in the composites processed with intermediate (67 and 74%) duty cycles; therefore pulsed processing appears to be a strong candidate for successful joining of these MMCs.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Devletian, J. H., Weld J. (London) 6, 33 (1987).Google Scholar
2Ahearn, J. S., Cooke, C., and Fishman, S. G., Met. Constr. 14, 192 (1982).Google Scholar
3Iseki, T., Kameda, T., and Maruyama, T., J. Mater. Sci. 19, 1692 (1984).CrossRefGoogle Scholar
4Dahotre, N. B., McCay, T. D., and McCay, M. H., J. Appl. Phys. 65 (12), 5072 (1989).CrossRefGoogle Scholar
5Kagawa, Y., Utsunomiya, S., and Kogo, Y., J. Mater. Sci. Lett. 8, 681 (1989).CrossRefGoogle Scholar
6Schaefer, W. H. and Christian, J. L., General Dynamics, Convair Division, San Diego, CA, Report No. AFML-TR-69–36 (Vols. I, II, III), January 1969.Google Scholar
7Hersh, M. S., Weld. J. (London) 47, 9 (1968).Google Scholar
8Hersh, M. S., Weld. J. (London) 49, 6 (1970).Google Scholar
9Metzger, G. E., Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH, Report No. AFML-TR-68–101, September 1968.Google Scholar
10Kennedy, J. R., Grumman Aerospace Corporation, Grumman Research Department Memorandum No. RM-519, October 1971.Google Scholar
11Moore, T. J., Aerospace Structural Materials Conference Proceedings, No. NASA SP-227 (NASA Lewis Research Center, Cleveland, OH, 1969), p. 119.Google Scholar
12Pittinato, G. F., Inertia Welding of Metal Matrix Composites Lightweight Torpedo Hull Structure (McDonnel Douglas Astronautics Co., Huntington Beach, CA, Report No. MDC-H1034–1, NSWC Contract No. N60921–83-C-0176, Silverspring, MD, 1983).Google Scholar
13Ahearn, J. S., Cooke, D. C., and Barta, E., Joining Discontinuous SiC/Al Metal Matrix Composites, MML-TR-85–44C (1985).Google Scholar
14McCay, M. H., McCay, T. D., Dahotre, N. B., Sharp, C. M., Sedghinasab, A., and Gopinathan, S., in The Use of Lasers in Manufacturing (Proc. Aerospace Technical Conference), organized by Sweet, E. J. (Society of Automotive Engineers, Inc., Warrendale, PA, 1989), p. 57.Google Scholar
15Zacharia, T., David, S. A., Vitek, J. M., and DebRoy, T., Metall. Trans. A 20A, 957 (1989).CrossRefGoogle Scholar
16Lloyd, D. J., Composites Science and Technology 35, 159 (1989).CrossRefGoogle Scholar
17Rohatgi, P. K., Yarandi, F. M., and Liu, Y., in Cast Reinforced Metal Composites (Proc. International Symp. on Advances in Cast Reinforced Composites), edited by Fishman, S. G. and Dhingra, A. K. (ASM INTERNATIONAL, Metals Park, OH, 1988), p. 249.Google Scholar
18Smith, D. J., Jepps, N. W., and Page, T. F., J. Microsc. 114 (1), 1 (1978).CrossRefGoogle Scholar
19Jepps, N. W., Smith, D. J., and Page, T. F., Acta Cryst. A35, 916 (1979).CrossRefGoogle Scholar
20Wawner, F. W., Teng, A. Y., and Nutt, S. R., SAMPE Quarterly 2, 39 (1983).Google Scholar
21Arsenault, R. J. and Pande, C. S., Scripta Metall. 18, 1131 (1984).CrossRefGoogle Scholar
22Taylor, A. and Laidler, D., Brit. J. Appl. Phys. 7, 174 (1950).CrossRefGoogle Scholar
23Fetterley, G. H., J. Electrochem. Soc. 104, 322 (1957).CrossRefGoogle Scholar
24Baumann, H. N., J. Electrochem. Soc. 99, 109 (1952).CrossRefGoogle Scholar
25Whitney, E., Nature 199, 278 (1963).CrossRefGoogle Scholar
26Iseki, T., Kameda, T., and Maruyama, T., J. Mater. Sci. 19, 1692 (1984).CrossRefGoogle Scholar
27Viala, J., Fortier, P., Bonnetot, B., and Bouix, J., Mater. Res. Bull. XXI, 387 (1986).CrossRefGoogle Scholar
28Schoennahl, J., Wilier, B., and Daire, M., Mater. Sci. 4, 338 (1979).Google Scholar
29Kosolapova, T. Y., Carbides Properties, Production and Application (Plenum, New York, 1971), p. 188.Google Scholar
30Bill, R., Appleton, B., Sartwell, B., Peercy, P. S., Schaefer, R., and Osgood, R., Mater. Sci. Eng. 70, 23 (1985).Google Scholar
31Inoue, A., Iwadochi, T., Minemura, T., and Masumato, T., Trans. J. I. M. 22, 197 (1981).Google Scholar
32Singh, J. and Mazumder, J., Metall. Trans. A 18A, 313 (1987).CrossRefGoogle Scholar
33Dahotre, N. B. and Mukherjee, K., J. Mater. Sci. 25, 445 (1990).CrossRefGoogle Scholar
34Inoue, Z., Inomata, Y., Tanaka, H., and Kawabata, H., J. Mater. Sci. 15, 575 (1980).CrossRefGoogle Scholar
35Inoue, Z., Inomata, Y., Tanaka, H., and Kowabata, H., J. Mater. Sci. 15, 255 (1980).CrossRefGoogle Scholar
36Inomata, Y., Tanaka, H., Inoue, Z., and Kawabata, H., J. Ceram. Soc. Jpn. 88 (6), 353 (1980).Google Scholar
37Andrews, K. W., Dyson, D. J., and Keown, K. R., Interpretation of Electron Diffraction Patterns (Plenum, New York, 1967), p. 172.CrossRefGoogle Scholar
38Arsenault, R. J. and Fisher, R. M., Scripta Metall. 17, 67 (1983).CrossRefGoogle Scholar
39Arsenault, R. J., Mater. Sci. Eng. 64, 171 (1984).CrossRefGoogle Scholar
40Nieh, T. G. and Chellman, D. J., Scripta Metall. 18, 925 (1984)CrossRefGoogle Scholar
41McDanels, D. L., Metall. Trans. A 16A, 1105 (1985).CrossRefGoogle Scholar
42Arsenault, R. J. and Wu, S. B., Mater. Sci. Eng. 96, 77 (1987).CrossRefGoogle Scholar
43Flom, Y. and Arsenault, R. J., J. Met. 38 (6), 31 (1986).Google Scholar
44Vogelsang, M., Arsenault, R. J., and Fisher, R. M., Metall. Trans. A 17A, 379 (1986).CrossRefGoogle Scholar
45Papazian, J. M. and Adler, P. N., Metall. Trans. A 21A, 401 (1990)CrossRefGoogle Scholar