Hostname: page-component-797576ffbb-gvrqt Total loading time: 0 Render date: 2023-12-05T02:06:35.668Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Processing of epitaxial LiMn2O4 thin film on MgO(110) through metalorganic precursor

Published online by Cambridge University Press:  31 January 2011

Yumi H. Ikuhara
Affiliation:
Fine Ceramics Research Association, Synergy Ceramics Laboratory, 2–4-1 Mutsuno, Atsuta-ku, Nagoya, 456–8587, Japan
Yuji Iwamoto
Affiliation:
Fine Ceramics Research Association, Synergy Ceramics Laboratory, 2–4-1 Mutsuno, Atsuta-ku, Nagoya, 456–8587, Japan
Koichi Kikuta
Affiliation:
Graduate School of Engineering, Nagoyua University, Furo-cho, Chikusa-ku, Nagoya, 464–8603, Japan
Shin-ichi Hirano
Affiliation:
Graduate School of Engineering, Nagoyua University, Furo-cho, Chikusa-ku, Nagoya, 464–8603, Japan
Get access

Abstract

Epitaxial LiMn2O4 was successfully synthesized by coating a [Li–Mn–O] metalorganic precursor solution onto MgO (110) substrates at temperatures as low as 350 °C. Cross-sectional transmission electron microscopy observation revealed that the orientation relationship between LiMn2O4 and MgO was (111) LiMn2O4 //(111) MgO, (110) LiMn2O4 //(110) MgO, and [112] LiMn2O4 //[112] MgO, which resulted in the (111) LiMn2O4 planes growing perpendicular to the surface plane of MgO. The interface structure consisted of (111) layers of Mn atoms in the LiMn2O4 crystal aligned with the Mg atoms in the (111) planes of the MgO substrate when viewed along the [112] direction.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Thackeray, M.M., Johnson, P.J., de Picciotto, L.A., Bruce, P.G., and Goodenough, J.B., Mater. Res. Bull. 19, 179 (1984).Google Scholar
2.Bach, S., Pereira-Ramos, J.P., Baffier, N., and Messina, R., Electrochem. Acta 37, 1301(1992).Google Scholar
3.Rossouw, M.H., de Kock, A., de Picciotto, L.A., Thackeray, M.M., David, W.I.F, and Ibberson, R.M., Mater. Res. Bull. 25, 173 (1990).Google Scholar
4.Ohzuku, T., Kitagawa, M., and Taketsugu, H., J. Electrochem. Soc. 137, 769 (1990).Google Scholar
5.Huang, H. and Bruce, P.G., J. Electrochem. Soc. 141, 185 (1994).Google Scholar
6.Tarascon, J.M., McKinnon, W.R., Coowar, F., Bowmer, T.N., Amatucci, G., and Guyomard, D., J. Electrochem. Soc. 141, 1421 (1994).Google Scholar
7.Gummow, R.J., de Kock, A., and Thackeray, M.M., Solid State Ionics 69, 59 (1994).Google Scholar
8.Masquelier, C., Tabuchi, M., Ando, K., Kanno, R., Kobayashi, Y., Maki, Y., Nakamura, O., and Goodenough, J.B., J. Solid State Chem. 23, 256 (1996).Google Scholar
9.Guyomard, D. and Tarascon, J.M., J. Electrochem. Soc. 139, 937 (1992).Google Scholar
10.Ikuhara, Y.H., Iwamoto, Y., Kikuta, K., and Hirano, S., J. Mater. Res. 14, 3102 (1999).Google Scholar
11.Reimers, J.N. and Dahn, J.R., J. Electrochem. Soc. 139, 2091 (1992).Google Scholar
12.Gummow, R.J., Liles, D.C., Thackeray, M.M., and David, W.I.F, Mater. Res. Bull. 28, 1177 (1993).Google Scholar
13.Thomas, M.G.S.R, David, W.I.F, Goodenough, J.B., and Gloves, P., Mater. Res. Bull. 20, 1137 (1985).Google Scholar
14.Dahn, J.R., von Sacken, U., and Michael, C.A., Solid State Ionics 44, 87 (1990).Google Scholar
15.Hirano, A., Kanno, R., Kawamoto, Y., Takeda, Y., Yamaura, K., Takano, M., Ohyama, K., Ohashi, M., Yamaguchi, Y., Solid State Ionics 78, 123 (1995).Google Scholar
16.Fragnaud, P., Nagarajan, R., Scaleich, D.M., and Vujic, D., J. Power Sources 54, 362 (1995).Google Scholar
17.Shokoohi, F.K., Tarascon, J.M., and Wilkens, B.J., Appl. Phys. Lett. 59, 1260 (1991).Google Scholar
18.Shokoohi, F.K., Tarascon, J.M., Wilkens, B.J., Guyomard, D., and Chang, C.C., J. Electrochem. Soc. 139, 1845 (1992).Google Scholar
19.Antaya, M., Dahn, J.R., Preston, J.S., Rosen, E., and Reimers, J.N., J. Electrochem. Soc. 140, 575 (1993).Google Scholar
20.Antaya, M., Cleams, K., Preston, J.S., Reimers, J.N., and Dahn, J.R., J. Appl. Phys. 76, 2799 (1994).Google Scholar
21.Hwang, K-H., Lee, S-H., and Joo, S-K., J. Electrochem. Soc. 41, 3296 (1994).Google Scholar
22.Bates, J.B., Gruzalski, G.R., Dadney, N.J., Luck, C.F., and Yu, X., Solid State Ionics 70/71, 619 (1994).Google Scholar
23.Bates, J.B., Lubben, D., Dudney, L.J., and Harf, F.X., J. Electrochem. Soc. 142, L149 (1995).Google Scholar
24.Ikuhara, Y.H., Iwamoto, Y., Kikuta, K., Hirano, S., IONICS 6, 156 (2000).Google Scholar
25.Ikuhara, Y.H., Iwamoto, Y., Kikuta, K., and Hirano, S., Ceram. Trans. 83, 53 (1998).Google Scholar