Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T03:59:26.106Z Has data issue: false hasContentIssue false

Preparation of stages 2–4 ternary AlCl3–FeCl3-graphite intercalation compounds

Published online by Cambridge University Press:  03 March 2011

Takeshi Abe
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Yasuo Mizutani
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Mitsuru Asano
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Toshio Harada
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Get access

Abstract

Intercalation of AlCl3 into stage 2 FeCl3-graphite intercalation compound (GIC) using an ordinary two-bulb method has been studied by x-ray diffraction. Stages 2, 3, and 4 ternary AlCl3-FeCl3-GlC's are obtained when the temperatures of the stage 2 FeCl3-GIC were set at T (GIC) = 503, 523, and 553 K, respectively, for the AlCl3 intercalate material at T (AlCl3) = 473 K, that is, the vapor pressure of (AlCl3)2 (g) of the main vapor species to be held at p {(AlCl3)2} = 2.4 × 105 Pa. However, for the temperature of the stage 2 FeCl3-GIC at T (GIC) = 573 K, the (AlCl3)2 (g) vapor is found to promote the decomposition of the stage 2 FeCl3-GIC, resulting in the formation of graphite. The decomposition of the stage 2 FeCl3-GIC is considered to take place because the complex AlFeCl6 (g) in the gas phase, which is formed from both (AlCl3)2 (g) and FeCl3 existing at the edge of the FeCl3-GIC, is thermodynamically more stable than the FeCl3 and AlCl3 intercalates in their GIC at p {(AlCl3)2} = 2.4 × 105 Pa and T (GIC) = 573 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Croft, R. C., J. Appl. Chem. 2, 557 (1952).CrossRefGoogle Scholar
2Dzurus, M. and Hennig, G. R., J. Am. Chem. Soc. 79, 1051 (1957).CrossRefGoogle Scholar
3Tominaga, T., Sakai, T., and Kimura, T., Bull. Chem. Soc. Jpn. 49, 2755 (1976).Google Scholar
4Nefed'ev, A.V., Lapkina, N. D., Stukan, R. A., Stuchkov, Y. T., Lependina, O. L., Novikov, Y. N., and Vol'pin, M. E., Zh. Strukt. Khim. 20, 835 (1979).Google Scholar
5Dziemianowicz, T., Vangelisti, R., Herold, A., and Foreman, W., in Extended Abstracts, 15th Biennial Conf. on Carbon, American Carbon Society (1981), p. 379.Google Scholar
6Vangelisti, R., Mareche, J. F., Furdin, G., and Dziemianowicz, T., C.R. Acad. Sci. 296II, 691 (1983).Google Scholar
7Stumpp, E., Kebschull, R., and Nietfeld, G., in Extended Abstracts, 18th Biennial Conf. on Carbon, American Carbon Society (1987), p. 121.Google Scholar
8Inagaki, M., Wang, Z. D., Okamoto, Y., and Ohira, M., Synth. Met. 20, 9 (1987).Google Scholar
9Inagaki, M. and Ohira, M., Carbon 31, 777 (1993).CrossRefGoogle Scholar
10Inagaki, M. and Ohira, M., Tanso 159, 222 (1994).Google Scholar
11Dresselhaus, M. S. and Dresselhaus, G., Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
12Mizutani, Y., Abe, T., Asano, M., and Harada, T., J. Mater. Res. 8, 1586 (1993).CrossRefGoogle Scholar
13Chase, M. W. Jr., Davies, C. A., Downey, J. R. Jr., Frurip, D. J., McDonald, R. A., and Syverud, A. N., J. Phys. Chem. Ref. Data, 14(1985), Supplement No. 1, JANAF Thermochemical Tables, 3rd ed.Google Scholar
14Metz, W. and Hohlwein, D., Carbon 13, 87 (1975).CrossRefGoogle Scholar
15Cowley, J. M. and Iber, J. A., Acta Crystallogr. 9, 421 (1956).Google Scholar
16Mazurek, H., Ghavamishahidi, G., Dresselhaus, G., and Dresselhaus, M. S., Carbon 20, 415 (1982).CrossRefGoogle Scholar
17Gualberto, G. M., Underhill, C., Leung, S. Y., and Dresselhaus, G., Phys. Rev. B 21, 862 (1980).CrossRefGoogle Scholar
18Suzuki, M., Chow, P. C., and Zabel, H., Phys. Rev. B 32, 6800 (1985).CrossRefGoogle Scholar